Software tools and web resources to generate math objects for 3D-printing

E. Canessa, G. Fior, C. Fonda - ICTP SciFabLab Tarig Abdelgadir - ICTP Math Group

The Abdus Salam International Centre for Theoretical Physics 50th Anniversary 1964-2014

Software

- From simple to more complex:
 - K3DSurf (k3dsurf.sourceforge.net)
 - OpenSCAD (openscad.org)
 - Mathematica[™] (wolfram.com)

esian Coordinates: F(xyzzt) = 0	
And a surger and a Country Fill	
12:10:10:10:10:10:10:10:10:10:10 Concentration 10:10:10:10:10:10:10:10:10:10:10 Concentration Concentration 10:10:10:10:10:10:10:10:10:10:10 Concentration Concentration 10:10:10:10:10:10:10:10:10:10:10:10 Concentration Concentration 10:10:10:10:10:10:10:10:10:10:10:10:10:1	Crid =09-09-09 Poly =75352 Vertx=37682
Device and the second of the s	
Drawing Options	
Lines Triangles V Rit V India V Ase Name Cut Grid Grid Resolution Grid Resolution V A V A * V 4 A V A A * V 4 A V A * V 4 A V A * V 4 A V A	
Animation/Morph:	

K3DSurf

- K3DSurf is a program to visualize and manipulate mathematical models in 3, 4, 5 and 6 dimensions
- K3DSurf supports Parametric equations and Isosurfaces
- multiplatform (Win/OSX/Linux), free opensource software
- web: k3dsurf.sourceforge.net

 $\overline{\mathbf{v}}$

K 3D Surf v0.6.2: Math for Fun

- = ×

h.

Project OpenGL Config POV-Ray PageView About

۹ 🌭	nia 🖗 👘							
IsoSurface	Parametric	Tools	Hall	ND		Parametric (OpenGL ON)	IsoSurface (OpenGL ON)	
Cartesian Co	ordinates: F(x	,y,z,t,)	= 0					
/* And now, to r Schwartz Iso formulas desc */ if((x^10 + y^1 (cos(x) + cos sin(x)/(2*sqrt sin(z)/(2*sqrt sin(z)/(2*sqrt sin(z)/(2*sqrt sin(z)/(2*sqrt	nake a tick and surface, we use cribed above : (0 +z^10 < 3*(3 (y) + cos(z))*(((sin(x)^2 + sin((sin(x)^2 + sin((sin(x)^2))) +cos (sin(x)^2 + sin(closed the two .5^10)), cos(x + y)^2 + t*sqrt(sin(i(z + y)^2 +	(x)^2	Exam Close Edit Clear Co 4 4 4	ples (51) so_2 ··· ·· Load elete Newin mpute X 4 Y 4 Z 4	Grid =60x60x60 Poly =48208 Vertx=24096		
- Activate t (x^2 + y^2	the condition Cl • 0.05) & (x+y	ND {x,y,z, + z > -1)	,t}:		ND IND order lesti			
Options: (Exp	ort/Resolution/	Optimisat	tion)			A KR		AN AL
✓ Lines	Draw	ing Option	ns Infos [Axe	Norm			ALL.
Cut Grid Grid Resolution XYZ X Y X Y Y <td< td=""><td>2 > 2 > 2 ></td><td></td><td></td><td></td></td<>					2 > 2 > 2 >			

Tutorial: "Math to Jewel"

 See: "From Math to Jewel: an Example" an article by Gaya Fior

in the free open book on "Lowcost 3D Printing for Science, Education and Sustainable Development"

Editors: E. Canessa + C. Fonda + M. Zennaro

http://sdu.ictp.it/3D/book.html

From Math to Jewel: an Example

Gaya Fior

ICTP Science Dissemination Unit collaborator and 32b.it, Trieste, Italy gfiorfior@gmail.com

3D printing gives the possibility to transform what you can imagine into a tangible object that then can be also worn and showed off.

We will see how using just free tools available on the web we can transform a mathematical isosurface into an object that can be then used for instructional or decorative purposes.

The first step is to download a software that lets us visualize and manipulate mathematical surfaces in three dimensions. A good choice is K3DSurf¹, a free tool that works on multiple platforms and supports parametric equations and isosurfaces.

The software comes with more than 50 built-in examples, so you can start modifying the parameters in the provided equations to study the effects on the rendering result.

DEMO K3DSurf for 3D printing

OpenSCAD

- OpenSCAD is a programming language for for creating solid 3D CAD models
- it's free, multiplatform (Win, OS X and Linux) and opensource, the lead author is Marius Kintel (see photo ;-)
- web: openscad.org

3D primitives

- **cube** (*size=10*) ;
- **sphere** (*radius=10*) ;
- cylinder (*h*,*r*1, *r*2) ;
- cube ([width, height, depth]);
- polygon ([points]);

Transformations

- translate ([x,y,z]) primitives ;
- rotate ([x,y,z]) primitives ;
- scale ([x,y,z]) primitives ;
- mirror ([x,y,z]) primitives ;

Boolean operations

- union ()
- difference ()
- intersection ()

Loops & conditions

- for (i = [start:end])
 { ... }
- **if** (condition) { ... }
- ... other usual stuff

Others

- many mathematical functions are available: power, root, trigonometrical, log, exponential, etc...
- functions, modules, include
- 2D primitives, extrusion
- export of 3D models as STL

A few simple commands

OpenSCAD CheatSheet

<pre>Syntax var = value; module name() { } name(); function name() = name(); include <scad> use <scad></scad></scad></pre>		<pre>Transformations translate([x,y,z]) rotate([x,y,z]) scale([x,y,z]) mirror([x,y,z]) multmatrix(m) color("colorname") color([r, g, b, a])</pre>	Mathematical abs sign acos asin atan atan atan2 sin	<pre>Other echo() str() for (i = [start:end]) { } for (i = [start:step:end]) { } for (i = [,,]) { } intersection_for(i = [start:end]) { } intersection for(i = [start:step:end]) { }</pre>	
2D circle(radius) square(size,center) square([width,height] polygon([points]) polygon([points],[pat	,center) :hs])	<pre>hull() minkowski() Boolean operations union() difference() intersection()</pre>	cos floor round ceil ln len log	<pre>intersection_for(i = [,,]) { } if () { } assign () { } search() import("stl") linear_extrude(height,center,convexity,twist,slices rotate_extrude(convexity) custocs(file = "dat" contor convertiv)</pre>	
3D sphere(radius) cube(size) cube([width,height,de cylinder(h,r,center) cylinder(h,r1,r2,cent polybedrop(points, tr	Examples cylinder(10,5,5); cylinder(h=10,r=5); epth])	<pre>Modifier Characters disable show only highlight % transparent</pre>	min max pow sqrt exp rands	<pre>surrace(rtte =uat ,center,convextty) projection(cut) render(convexity) Special variables \$fa minimum angle \$fs minimum size</pre>	
polynear antipolitical, ci	congress, contenery,			\$fn number of fragments	

\$t animation step

By Peter Uithoven @ Fablab Amersfoort (CC-BY

DEMO

OpenSCAD: Menger sponge (example024)

MathematicaTM

- Mathematica[™] doesn't need any introduction, is the most powerful tool for mathematics
- it can generate and export 3D models (as STL, but it isn't always a correct manifold)
- www.wolfram.com/mathematica

Import and Export fully support the STL file format.

Import and Export

- Import ["file.stl"] imports an STL file as a Graphics3D object.
- Export ["file.stl", expr] exports a Graphics3D expression to a binary STL file.
- Import ["file.stl"] returns an expression of the form Graphics3D [GraphicsComplex [vertices, primitives, opts]].
- Export ["file.stl", Graphics3D[...]] creates an STL file representing a solid physical model.
- Import ["file.stl", elem] imports the specified element from an STL file.
- Import ["file.stl", {elem, sub_a, sub_b, ...}] imports a subelement.
- Import ["file.stl", { {elem1, elem2, ...} }] imports multiple elements.
- The import format can be specified with Import ["file", "STL"] or Import ["file", {"STL", elem, ...}].
- Export ["file.stl", expr, elem] creates a binary STL file by treating expr as specifying element elem.
- Export ["file.stl", {expr1, expr2, ...}, {{elem1, elem2, ...}}] treats each expri as specifying the corresponding elemi.
- Export ["file.stl", expr, opt1 -> val1, ...] exports expr with the specified option elements taken to have the specified values.
- Export ["file.stl", {elem1 -> expr1, elem2 -> expr2, ...}, "Rules"] uses rules to specify the elements to be exported.

DEMO MathematicaTM: Calabi-Yau

Calabi-Yau manifold (used in string theory)

```
G[alpha_] := Module[{}, n = 3; R = 40;
 CalabiYau[z_, k1_, k2_] := Module[{
   z1 = Exp[2 Pi I k1/n] Cosh[z]^{(2/n)},
   z^{2} = Exp[2 Pi I k^{2}/n] Sinh[z]^{(2/n)},
   N[{Re[z1], Re[z2], Cos[alpha] Im[z1] + Sin[alpha] Im[z2]}]];
 F[k1_, k2_] := Module[{}, XX = CalabiYau[u + I v, k1, k2];
   S1 =
   Graphics3D[
    Table[{Hue[0.6], JoinForm[Round],
     Tube[Table[XX, {u, -1, 1, 2/R}], 0.02]}, {v, 0, Pi/2, Pi/20}]];
   S2 =
   Graphics3D[
    Table[{Hue[0.5], JoinForm[Round],
     Tube[Table[XX, {v, 0, Pi/2, (Pi/2)/R}], 0.02]}, {u, -1, 1, 0.1}]];
   Show[{S1, S2}]];
 Show[Graphics3D[{Hue[0.9], CalabiYau[z, k1, k2]]];
Show[G[0.2], Boxed -> False]
```

