Author Archives: scifablab

Prusa i3 l’elettronica

Post introduttivo e indice.

In questo Post andiamo a vedere l’elettronica che comanda la stampante, di quali moduli si compone e come sono interconnessi tra di loro.

In quasi tutte le varianti costruttive della stampante 3D Prusa i3 è presente la scheda Arduino  MEGA 2560, la shield dedicata RAMPS 1.4 e un display LCD dotato di controller (encoder based)/pulsante rotativo per la selezione e conferma delle opzioni/impostazioni di stampa.

Per il pilotaggio degli stepper motors, si utilizzano i cosidetti Pololu drivers A4988 basati sull’omonimo chipset Allegro.

Vediamoli nel dettaglio:

Arduino MEGA 2560 R3
I dati principali:
Microcontroller:  ATmega2560
Operating Voltage:  5V
Input Voltage (recommended):   7-12V
Input Voltage (limits):   6-20V
Digital I/O Pins: 54 (di cui 14 sono uscite PWM )
Analog Input Pins: 16
Flash Memory: 256 KB di cui 8 KB usati dal bootloader
SRAM: 8 KB
EEPROM: 4 KB
Clock Speed: 16 MHz

arduino_mega2560_R3

Per una descrizione  più dettagliata rimando al sito ufficiale http://www.arduino.cc/en/Main/ArduinoBoardMega2560

SHIELD RAMPS 1.4

RAMPS sta per RepRap Arduino Mega Pololu Shield.

In breve è una scheda che interfaccia il modulo Arduino MEGA 2560 con i dispositivi della stampante mediante appositi connettori per connettere:
fino a 5 motori stepper connettendo i driver Pololu A4988 negli appositi slot;
2 riscaldatori hot end da 12Volt 40W per poter utilizzare fino a due estrusori;
1 piatto di stampa riscaldato da 12Volt 10A;
ventilatori regolati in PWM e non da 12 volt e
display LCD con o senza lettore di SD card;
Sensori di temperatura (termistori) per gli hot end e piatto riscaldato
Endstops per delimitare l’escursione dei tre assi XYZ ed identificare la HOME position.

In particolare la parte di potenza consiste di 3 mosfet che regolano la corrente che scorre  nei riscaldatori e nel piatto riscaldato.
Per una più ampia trattazione su questa scheda rimando al sito http://reprap.org/wiki/Arduino_Mega_Pololu_Shield

RAMPS_1.4

 Display LCD
Display LCD

Il display è già montato su un pcb (verde) che a sua volta è saldato sul PCB rosso contenente l’encoder rotativo/pulsante di selezione un buzzer che suona alla conferma delle opzioni di menu che avviene premendo il pulsante rotativo e un pulsante di reset (del display).

I colori dei PCB possono cambiare in base al fornitore.

Per collegare il display alla RAMPS sono necessarie due cavi flat da 10 pin (geralmente forniti assieme al display)  connessi tra il PCB del display e un PCB (anch’esso fornito con il display) dotato di connettori  disposti in modo da essere alloggiati senza possibilità di errore sulla RAMPS.

Display LCD2RAMPS adapter

La scheda Display sul retro oltre ai due connettori per i flat di connessione alla RAMPS, alloggia un connettore per schede di memoria SD. In qusto connettore alloggeremo la SD card contenente i nostri Gcode che andremo a stampare stand alone.

display2Nella foto sono indicate tutte le parti di questo assemblaggio.
RAMPS+LCD

STEPPER CONTROLLER (Pololu o Stepstick)

POLOLUFRONT                                         BACK

stepper driver A4988_1stepper driver A4988

 

 

 

 

Questo controller basato sul chipset  Allegro A4988 è già predisposto per il montaggio sui connettori della scheda RAMPS.

Di questi controller ne servono 4; uno per lo stepper dell’asse X (Riquadro Rosso), uno per lo stepper dell’asse Y (Riquadro Azzurro)  uno per i 2 stepper dell’asse Z (Riquadro Verde) e uno per lo stepper dell’estrusore E (Riquadro Arancione). RAMPS+STEPSTICK

I controller si inseriscono sui connettori femmina disposti sulla RAMPS.
Il verso di montaggio è indicato dai puntini gialli.

Assemblaggio del panino Arduino+RAMPS

La scheda Arduino MEGA2560 si assembla con la RAMPS facendo coincidere i connettori femmina della prima con i pin della seconda, a formare un sandwich.

Mega_ramps2

Il connettore principale (verde) comprende la parte maschio saldata al PCB e la parte femmina staccabile alla quale collegheremo i fili gialli del +12V e neri di massa.
Questo porta alla RAMPS le alimentazioni a 12V 5A e 10A provenienti dall’alimentatore.

La fwiring_power_conn_rampsoto a destra indica esattamente la disposizione dei cavi di alimentazione  sulla parte volante del connettore di alimentazione.
Come si può vedere, da sinistra nell’ordine il +12V 10A e relativa massa che serviranno per l’alimentazione del circuito di controllo del piatto riscaldato.
Queste linee devono avere un numero maggiore di conduttori (da un minimo di 4 in su a seconda dell’ATX che si modifica)

Successivamente il +12V 5A e relativa massa che  serviranno per l’alimentazione dell’elettronica, motori ed estrusore.
Queste linee possono avere un numero minore di conduttori (da un minimo di 2 in su a seconda dell’ATX che si modifica)

Endstops

Gli Endstops o finecorsa servono a fermare i carrelli degli assi X,Y e Z quando raggiungono la posizione di 0,0,0 ossia le coordinate X, Y, Z del punto di inizio della stampa.

Ci sono varie possibilità di scelta riguardo al punto 0 comunque nella Prusa i3 di mia costruzione sono impostate nell’angolo in basso a destra.

Di conseguenza gli Endstop dovranno essere posizionati nel seguente modo:
Asse X endstop fissato a destra negli appositi fori ricavati sull’XEND-IDLER

IMG_1211
Asse Y endstop dietro fissato sull’apposita feritoia dell’ YMOTOR  o su un angolare metallico di opportune dimensioni fissato sulla base in legno.

Y Motor
Asse Z endstop in basso  fissato sull’Endstop Z holder

ENDSTOP-Z-HOLDER-V3motore sx

Posizionati gli Endstop si devono collegare tutti i fili alla RAMPS.
Prestare molta attenzione in questa fase in quanto un cablaggio errato o un corto circuito possono compromettere irrimediabilmente l’elettronica.

Cliccando sullo schema è possibile scaricare la versione in dimensioni originali.

Schema filatureSchema Filature

Post successivo :  Il Firmware e le sue impostazioni di base

Post introduttivo e indice.

Programma del Corso di assemblaggio di una stampante 3D (Prusa i3 Hephestos)

Prima lezione (giovedi 25/06): 18:00 – 20:30

  • Breve spiegazione della struttura del corso e posizionamento su proprio tavolo di lavoro.
  • 1 Attività preliminari
  • 2 Assemblaggio Asse X

Seconda lezione (sabato 27/06): 15:00 – 20:00

  • Allineamento attività eventualmente non completate della lezione precedente.
  • 3 Assemblaggio asse Z
  • Se avanza tempo inizio assemblaggio asse Y

Terza lezione (giovedì 02/07): 18:00 – 20:30

  • 4 Assemblaggio asse Y

Quarta lezione (sabato 04/07): 15:00 – 20:00

  • Allineamento attività eventualmente non completate della lezione precedente.
  • 5 Assemblaggio Extruder
  • 6 Assemblaggio Parte Elettronica

Quinta lezione (giovedì 09/07): 18:00 – 20:30

  • Allineamento attività eventualmente non completate della lezione precedente.
  • 7 Calibrazione e stampa
  • Eventuale tempo rimanente dedicato a verifiche e prove.

 Sesta lezione (sabato 11/07): 15:00 – 20:00

  •  Lezione sull’uso degli slicer (Cura, Repetier host + Cura engine,  Slic3r)
  • Breve spiegazione teorica e prove pratiche sulla configurazioen del SW, creazione di Gcode e stampa sulle stampanti.

Settima lezione (giovedì 16/07): 18:00 – 20:30

  • Lezione sull’uso base di modellatori 3D (Blender)
  • Spiegazione teorica sull’interfaccia utente e uso base di Blender per modellare forme destinate ad essere stampate.

Ottava lezione (sabato 18/07): 15:30 – 20:00

  • Continuazione lezione sull’uso base di modellatori 3D (Blender)
  • Spiegazione teorica sull’interfaccia utente e uso base di Blender per modellare forme destinate ad essere stampate. Approfondimenti ecc.

Fine del corso

Corso di assemblaggio di una stampante 3D (Prusa i3 Hephestos)

 

NOTA: Informiamo che in data oddierna, 30 giugno 2015, il limite massimo di participanti al corso è stata raggiunta e NON ci sono più posti disponibili! –qualora si liberasse un posto vi informaremo opportunamente -grazie!

L’ICTP SciFabLab organizza per giugno-luglio un corso gratuito per l’auto-costruzione di una stampante 3D in kit modello Prusa i3 Hephestos. I maker iscritti avranno la possibilità di cimentarsi nell’assemblaggio, calibrazione e messa in opera della propria stampante 3D (il cui kit va acquistato da loro -e a loro spese- prima dell’inizio del corso) presso lo SciFabLab e con la guida di Daniele Lucà.

Caratteristiche della Stampante 3D che andremo a costruire:

Modello Prusa i3 Hephestos (info a questo link)

Link per l’acquisto on-line:

http://store.bq.com/en/kit-prusai3 (presso bq, spedizione dalla Spagna, prezzo 499.90 euro IVA compresa + 20 euro per la spedizione)

http://colorfabb.com/kit-prusa-i3-hephestos (presso ColorFabb, spedizione dall’Olanda, prezzo 499.90 euro IVA compresa + 10 euro per la spedizione)

http://www.crea-3d.com/store/it/stampanti-3d/8-kit-3d-stampante-prusa-i3-hephestos.html (presso Crea3D, spedizione dall’Italia, prezzo 499 euro IVA compresa + 13.42 euro per la spedizione)

oppure altri venditori di vostro gradimento, sarà comunque richiesta una prova dell’acquisto del kit in questione per confermare la vostra partecipazione al corso.

Volume di stampa: 215 x 210 x 180 mm
Display LCD con lettore per SD card
Ugello (Nozzle) da 0.4mm per filamento da 1,75 mm
Layer high da 60 microns (0.06 mm)
Telaio rigido in alluminio

Kit di attrezzi necessari all’assemblaggio compreso nel prezzo.

Per questa attività utilizzeremo il kit di montaggio della stampante 3D Prusa i3 Hephestos (progetto open source derivato dalla Prusa i3) che dovrà venire acquistato direttamente dai partecipanti (non viene venduto da noi): dopo aver ricevuto la vostra domanda di partecipazione al corso e avervi riservato un posto vi chiederemo entro 4 giorni una prova dell’ordine effettuato, in mancanza della quale il posto sarà reso di nuovo vacante.

prusa

Il corso avrà la durata di 8 incontri (due alla settimana, al giovedì e al sabato dalle 18 alle 21), nel periodo 25 giugno – 18 luglio, l’assemblaggio richiederà indicativamente i primi 6 incontri mentre gli ultimi due saranno dedicati a calibrazione e messa a punto; comunque tutti i partecipanti avranno modo di terminare la propria stampante nel fablab anche oltre questo tempo e saranno previste eventualmente alcune sessioni “di recupero”.

Il numero di posti disponibili è limitato a 10 persone, e le domande saranno accettate in ordine cronologico. Al momento NON ci sono più posti disponibili!.

Al termine del corso –a stampanti assemblate e funzionanti– verranno fatti anche dei brevi workshop per l’introduzione all’uso dei principali software di modellazione grafica e di Slicing per poter progettare e stampare in autonomia le proprie creazioni.

Requisiti dei partecipanti:

-acquistare il kit della stampante (entro 4 giorni dalla domanda di iscrizione)

-avere un computer portatile (ragionevolmente moderno; OS: Windows, Linux o Mac)

-essere maggiorenne e accettare il regolamento di utilizzo dello SciFabLab

Per iscriversi è richiesto l’invio all’indirizzo di posta elettronica scifablab@ictp.it del Form “2” (Project Coordinator) disponibile in questa pagina debitamente compilato (project title: “prusa i3”) e firmato, con allegata copia digitale (scansione o fotografia) della carta d’identità. Eventuali accompagnatori saranno accettati solo se vi sarà disponibilità di posti.

L’alimentatore

Post introduttivo e indice.

Dopo una lunga trattazione meccanica eccoci finalmente alla parte elettrica/elettronica.
La parte indispensabile per il funzionamento della stampante è l’alimentatore.

Quali requisiti deve avere l’alimentatore per la stampante 3D Prusa i3?

Tensione di Ingresso:   220Vac
Tensione di Uscita: 12Vcc 5A (60W) per l’alimentazione dell’estrusore  e motori.
12Vcc 11A (132W)  per l’alimentazione del letto di stampa riscaldato.

Con questi requisiti è possibile riutilizzare un alimentatore ATX da 250-300W di un vecchio computer inutilizzato.  Comunque maggiore è la potenza erogata meglio è.

Nel mio progetto ho utilizzato un ATX da 500W regalatomi da un collega.

L’alimentatore ATX nasce per alimentare a 5V l’elettronica del computer e a 12V gli hard disk e driver vari.
La corrente complessivamente erogata per un computer che è circa la metà di quella massima erogabile viene suddivisa su più conduttori che vanno con gli appositi connettori ad alimentare piastre, HD, Floppy, CD  ecc.

Dato che a noi servono sostanzialmente due linee a 12volt, che eroghino due potenze diverse, dovremo modificare l’alimentatore.

PRIMA DI APRIRE  L’ATX
ATTENZIONE, all’interno dell’alimentatore ci sono alte tensioni che possono anche causare la morte per folgorazione.

Prima di aprire l’alimentatore assicurarsi che sia stato spento da qualche ora in modo che tutti i condensatori si siano sufficientemente scaricati.

In ogni caso prestare la massima attenzione a non causare cortocircuiti con lo chassis metallico. Questo può causare folgorazioni!

Apriamo dunque questo ATX e tagliamo tutti i connettori collegati sui fili gialli (12Volt) sui fili rossi (5Volt) sui fili neri (MASSA).

Dovremmo trovare anche dei fili arancioni (3.3Volt) ed un filo verde (ENABLE).IMG_1006 Il panorama dovrebbe essere circa questo.

Una volta aperto l’ATX scopriremo che i fili gialli del 12Volt partono tutti dalle stesse piazzole del PCB.
Per fare in modo che le correnti che useremo non vadano a surriscaldare i cavetti, li raggruppiamo in modo che la corrente si suddivida su piu conduttori ed in particolare useremo 4 fili gialli per la linea da 12V 11A
e 2 fili gialli per la linea da 12V 5A
Se l’alimentatore che si ha a disposizione dovesse avere più fili, andranno tutti utilizzati suddividendoli con le stesse proposzioni.

Lo stesso vale per i fili neri di massa,  Di questi ve ne sono molti di più in quanto usati anche per le linee a 5V e 3,3V.

IMG_1002

Useremo perciò lo stesso numero di conduttori neri da affiancare ai gialli. I rimanenti neri li possiamo arrotolare e se riusciamo li lasciamo all’interno dell’alimentatore oppure li portiamo fuori  assieme a quelli rossi del 5Vcc (in ugual numero) per un eventuale uso per accessori extra.
Anche i fili arancioni li lasceremo all’interno dell’alimentatore accorciandoli al minimo ed isolandoli.

L’ENABLE
Ah si!! non dimentichiamo di collegare il filo verde ad un filo di massa (nero) in modo da abilitare l’ATX ad accendersi appena si inserisce la spina o si preme l’interuttorino (se presente, anche a vuoto (senza carichi collegati)  Se si usa un ATX relativamente nuovo dovrebbe esserci l’interruttore.IMG_1005

Separati i fili nelle due linee, possiamo richiudere con cautela l’ATX .

IMG_1009
Dovremmo avere una struttura come questa.

4+4 fili (positivo e negativo) per il 12Vcc 11A
2+2 fili (positivo e negativo) per il 12Vcc 5A
N fili rossi  e N fili neri (positivo e negativo) per il 5Vcc  (NON USATI).

Filo verde a massa (Isolato e rimane all’interno della scatola).

Prima di collegarlo alla stampante verificare che tutto funzioni misurando con un tester la presenza del 12Volt, del 5Volt e che il ventilatore di raffreddamento giri senza far rumori strani.

Post successivo :  L’elettronica

Post introduttivo e indice.

 

Prusa i3 Assemblaggio Estrusore

Post introduttivo e indice.

Per la realizzazione dell’estrusore mi sono ispirato al tipo Wade Extruder ampiamente documentato in Internet ed utilizzato nella maggior parte delle stampanti di questo tipo.

Le parti necessarie per questa fase sono le seguenti:

Parti plastiche stampate in Fablab e da questa stampante:

BODY-EXTRUDEUR-WADE-1.75mm-with-support
BODY-EXTRUDEUR-WADE-1.75mm

EXTRUDER-IDLER
extruder-idler

WADE-BIG-GEAR_43T
WADE-BIG-GEAR_43T
WADE-SMALL-GEAR_10T
WADE-SMALL-GEAR_10T
FAN-DUCT
FAN-DUCT
FAN-DUCT_PLA   (può essere stampato in un secondo tempo)
FAN-DUCT_PLA
FAN_DUCT_PLA_SUPPORT (può essere stampato in un secondo tempo)
FAN_DUCT_PLA_SUPPORT

 

FAN GRID
FAN_GRIDDi questa parte non pubblico il file STL perchè l’ho progettata in fretta e non mi piace. Lascio quindi libertà di scelta. (In internet se ne trovano di più belle).

Tutte queste parti devono essere stampate possibilmente in ABS, in particolare le prime 4 parti e il FAN_DUCT_PLA_SUPPORT dovranno avere un infill di almeno l’85/90% per garantire una maggiore solidità e resistenza al calore.
Le restanti 4 parti possono anche essere stampate in PLA in quanto non sottoposte a particolari sollecitazioni e fonti di calore.

I files STL sono scaricabili qui: parti plastiche Extruder

1 stepper motor
180px-RepRap-NEMA-17
3 viti M3x12
rondelle con foro da 3mm per il fissaggio del motore

3 cuscinetti a sfere tipo 608

1 Hobbed Bolt con filetto M8 e gola zigrinata per filamento da 1,75mm
bolt 25mm_1,75mm

7-8 rondelle diametro 18-20mm e foro da 8   (le stesse usate per la struttura dell’asse Y)

1 Dado M8 autobloccante (nylonstop)

1 Hot End tipo E3D V6 completo di riscaldatore,  termistore ugello da 0.4mm (nozzle) e ventillatore di raffreddamento  già assemblati. Viene inoltre fornito con tubetto Bowden in caso si voglia utilizzare questo metodo di alimentazione del filamento.

E3DV6

La descrizione originale del Hot End  E3D V6 è la seguente:
Il modello E3D V6 è il migliore Hot End al momento disponibile capace di estrudere materiali come ABS, PLA, LAYWOO-D3, NYLON ed altri.
Si trova in vendita su Ebay a prezzi che vanno da 20 euro fino a 60 euro (per la versione originale al 100%)

Si trovano versioni denominate Full Metal che non hanno un tubicino in teflon (PTFE) nel tratto compreso tra il dissipatore e l’hothend e permettono di spingere l’estrusore a temperature fino a300 gradi.

Le versioni con tubicino di PTFE vanno usate con temperature massime di 240 gradi.
Il PTFE è un materiale autolubrificante che permette un agevole scorrimento del filamento all’interno dell’estrusore.

Io utilizzo da parecchio tempo e molto intensamente l’E3D V6 nella versione con PTFE e posso assicurare che non mi ha dato mai un problema.

La ventolina di raffreddamento del gambo deve essere collegata direttamente al 12V e deve perciò essere sempre accesa alla massima velocità.

L’estrusore E3D V6 è ordinabile per filamenti da 3mm e da 1,75mm, completo di ugello da 0.4mm intercambiabile, elemento riscaldante da 40W 12V, Termistore da 100Kohm dotati di cavi di collegamento da 50cm e guaine resistenti al calore.

Diametro ingresso filamento: Input Diameter – 1.75mm
Diametro filamento estruso: Output Diameter – 0.4mm
Elemento riscaldante: Heating Element – 12v (40W)
Corpo dissipante in Alluminio – Aluminium heatsink
Ugello in Ottone – Brass nozzle (0.4mm)
Blocco riscaldante – Heater block
– 100K ohm NTC thermistor  Resistance: 100Kohm Accuracy: + / -1%
Temperature range: -50°+300°C Diameter: 2.0mm  B Value: 3950k
– 12v 40W ceramic cartridge heater.

Profilo termico Marlin: 11

Riservare una particolare attenzione all’acquisto dell’HotEnd perchè da questo dipende per l’80% la qualità della stampa.

1 barra rettificata diametro 8mm lunghezza 20mm (dovrebbe far parte del kit di barre lisce acquistate in precedenza).

1 o 2 ventilatori da 40x40mm 12volt con almeno 1 mt di cavo bipolare da utilizzare per il raffreddamento del PLA stampato.

2 molle di tensionamento extruder idler (si possono usare le molle presenti all’interno delle mollette da biancheria comperate all’IKEA)

8 viti M3x20mm e 8 dadi (assemblaggio ventilatori ai 2 fan duct);
2 viti M3x20mm e 2 dadi (fissaggio ventilatori al corpo extruder);
1 vite M3x35 e 1 dado M3 (fissaggio Extruder idler al corpo extruder);
2 viti M3x40mm e 2 dadi M3 (fissaggio Hot End al corpo extruder);
2 viti M3x50mm e 4 dadi M3 (assemblaggio Extruder Idler);
1 vite M3x10mm e 1 dado M3 (fissaggio puleggia 10T allo stepper motor)
Rondelle M3 a piacimento.

4 bulloni testa esagonale M4x30

Comperate qualche vite e dadi M3 in più perchè quando scivolano di mano vanno persi e si ritrovano solo quando non servono più!

Assemblaggio:

Iniziamo con assemblare i due ventilatori con i relativi Fan duct e Fan grid

HE fan assyEXTRUDER fan assy

Ora assembliamo l’Extruder idler
introdurre la barra rettificata 8x20mm nel cuscinetto 608 e alloggiare il tutto nell’idler esercitando una leggera pressione (non usare la forza).
Una volta alloggiato, il cuscinetto deve poter ruotare liberamente sulla barra.

Extruder idler assy

Inserire il dado M3 nell’apposita sede scaldandolo eventualmente con la punta del saldatore regolato a 180°C.

Inserire le viti M3x50 e le molle di pressione del premi filo.
La sequenza è VITE – RONDELLA – MOLLA – RONDELLA  inserire il tutto nel foro e avvitare il dado senza stringere.
Extruder idler assy2Extruder idler assy1Questo dado serve ad evitare che aprendo il premi filo per manutenzione, si sfili la vite con le rondelle e le molle.

Assemblare l’extruder come segue:

Alloggiare i due dadi M3 negli appositi fori:
Inserire la WADE-BIG-GEAR_43T nell’Hobbed bolt, seguita dalle 5 rondelle da 8mm e il cuscinetto 608;

Infilare l’hobbed bolt semi assemblato nel foro del body extruder ed inserire l’altro cuscinetto 608, le due rondelle ed il dado di serraggio autobloccante (nylonstop).

A seconda dei casi possono essere necessarie più o meno rondelle.

Extruder_ASSY

Serrare il dado e verificare che la gola zigrinata dell’Hobbed bolt sia allineata con il foro di passaggio del filamento.  Eventualmente aggiungere o togliere rondelle.

Extruder_ASSY2       Extruder_ASSY1

Asemblare la puleggia da 10 denti  WADE-SMALL-GEAR_10T inserendo il dado M3 nella feritoia ed avvitandovi la vite M3x10.

Gear 10T_assyOra inserire la WADE-SMALL-GEAR_10T sull’asse dello stepper motor e stringere la vite per bloccarla sull’asse del motore. Fissare poi  lo stepper motor nell’apposita sede con 3 viti M3x12mm regolando opportunamente la distanza tra i denti delle puleggie per far si che coincidano senza premere troppo una sull’altra e generare attriti indesiderati.

Extruder_ASSY4Verificato questo, stringere le viti e controllare che tutto giri senza attriti.

Ora fissare l’extruder idler pre assemblato in precedenza al corpo Extruder mediante la vite M3x35mm.   Il dado M3 è già inglobato nell’idler nell’apposita sede.

 

Extruder_ASSY5La vite di fissaggio non va stretta molto in quanto l’idler deve poter girare liberamente quando viene aperto per un’ispezione o per la pulizia della gola zigrinata dell’Hobbed Bolt.
Extruder_ASSY6Ora inseriremo l’Hot End nella sede e lo fissiamo con le due viti M3x40 e relativi dadi.

 

Extruder_ASSY7L’Hot  End va inserito fino in fondo nell’apposito foro sotto il corpo extruder ed orientato con il foro per la resistenza riscaldante posto verso la parte posteriore della stampante.
Quando si inseriscono le viti di fissaggio ricordarsi di inserire il FAN_DUCT_PLA_SUPPORT e bloccare poi tutto assieme al corpo estrusore mediante i due dadi M3.

Eventualmente aggiungere due rondelle per distribuire meglio la pressione del dado.
Extruder_ASSY8

NOTA: Le viti sono volutamente lunghe in modo da poter prevedere un secondo FAN DUCT support alla destra dell’Hot End in caso si desideri una stampante dedicata unicamente alla stampa di oggetti in PLA.   Al momento posso aggiungere che un solo ventilatore per il raffreddamento del PLA è sufficiente.

In un secondo momento potrete sbizzarrirvi a creare dei fanduct più performanti.

Ora è la volta del FAN DUCT assemblato prima con il ventilatore e il FAN Grid.
Questo FAN DUCT convoglia l’aria di raffreddamento sulla parte alta dell’Hot End in modo da evitare un eccessivo riscaldamento di questo e scongiurare l’accidentale fusione del corpo estrusore in ABS.
Si tenga presente che la parte finale dell’Hot End raggiunge temperature di 200-250 gradi che sono in linea di massima le temperature di fusione del PLA e dell’ ABS e durante la stampa il calore andando naturalmente verso l’alto, tende a riscaldare la parte superiore dell’Hot End che pur essendo dissipata grazie alle alettature in alluminio non lo è a sufficienza e può provocare due problemi:

1) il filamento che scorre all’interno si scalda prematuramente e raggiunge la densità di una poltiglia che intasa irrimendiabilmente il condotto costringendo a smontare pezzo per pezzo l’Hot End.

2) L’eccessivo riscaldamento causa lo scioglimento del corpo estrusore in ABS o peggio ancora se stampato in PLA con il rischio concreto di dover buttare via tutto alla prima stampa.

Perciò prima di intraprendere la stampa verificare che il ventilatore di raffreddamento dell’Hot End si accenda e giri regolarmente alla massima velocità appena si accende la stampante.

Riprenderemo questo argomento nei post successivi parlando dei collegamenti elettrici.

La figura illustra le posizioni ammesse del fan duct durante le operazioni con la stampante.

Posizione 1) Fan Duct orientato direttamente sull’Hot End
Quando si attende il riscaldamento prima della stampa e durante la stampa.
Praticamente SEMPRE.

Posizione 2) Dopo una stampa se si vuole accelerare il raffreddamento dell’Hot End
Ricordarsi poi di riportarlo in posizione 1 altrimenti si possono avere difficoltà nel raggiungimento della temperatura alla stampa successiva.

posizioni fan duct

Queste istruzioni non sono valide per l’estrusore E3D V6 che è già dotato di ventilatore e fanduct già montati sul gambo dell’estrusore.

Allo stesso modo assembliamo il FAN DUCT per il raffreddamento del PLA.
Extruder_ASSY9Questo Fan Duct è meno critico del precedente ma assicura ottimi risultati se usato con le stampe di oggetti in PLA. Fare attenzione che l’estremità inferiore del FanDuct non tocchi l’Hot End in quanto potrebbe sciogliersi.

NON SI DEVE USARE per stampare oggetti in ABS, pena layer che si sfogliano.
Va quindi attivato o disattivato in fase di slicing a seconda del materiale utilizzato per le stampe.  (Anche questo argomento lo riprenderemo in seguito).

Ora il gruppo estrusore è completo e non resta che fissarlo al carrello dell’asse X al quale eravamo rimasti nel post precedente Assemblaggio Meccanico FInale mediante 4 bulloni M4x30 e relativi dadi che andranno infilati nelle feritoie superiori come indicato nelle figure sotto.
In caso di difficoltà nella rotazione dei bulloni/dadi usare delle rondelle di spessore.

fissaggio extruder

IMG_1088

Nel mio caso ho utilizzato viti per la parte superiore e bulloni per la parte inferiore.

Seguono delle foto reali scattate durante l’assemblaggio e durante le stampe.

IMG_1078 IMG_1082 IMG_1082IMG_1208 IMG_1185

 

Post successivo: L’alimentatore

Post introduttivo e indice.

Prusa i3 Assemblaggio Meccanico Finale

 Post introduttivo e indice.

In questo post andremo a terminare l’assemblaggio dei tre assi e a verificare tutte le parti meccaniche assemblate.

A questo punto dovremmo aver davanti una stampante non ancora finita con

– Struttura in legno terminata e verniciata (a scelta);
– Carrello asse Y completamente assemblato;
– Barre lisce e filettate di supporto dell’asse Z, fissate correttamente alla struttura di    supporto  in legno;
– Carrello asse X con supporto scorrevole per l’estrusore posto in sede sui cuscinetti inseriti sulle barre lisce dell’asse X;

Per questa fase ci servono

1 stepper motor
180px-RepRap-NEMA-17
3 viti M3x12
rondelle con foro da 3mm
Cinghia GT2
GT2 Belt

Una Puleggia GT2
puleggia dentata

Fissare il motore sul supporto X-End motor usando le 3 viti M3x12 ed eventuali rondelle di spessore.
X motor+belt

Inserire la Puleggia GT2 sull’asse del motore e stringere un solo grano. (N.B. la puleggia usata realmente è quella in fotografia) Solo quando avremo trovato la corretta posizione della puleggia sull’asse del motore stringeremo definitivamente i due grani.

Posizionare la cinghia GT2 e fissare le due estremità (indicate con le frecce) con delle fascette stringicavo.
X carriage+belt2

La tensione della cinghia può essere regolata facilmente grazie alle dentature sotto i supporti dietro il carriage.

Se nella fase Assemblaggio Asse X  usate le parti-plastiche-asse-X_V1 il fissaggio della cinghia non necessita più dell’uso di fascette esterne al carrello perchè questa rimarrà incastrata saldamente nella fessura con il calco della cinghia GT2.
Inoltre il set comprenderà anche un coperchio posteriore vedi capitolo Assemblaggio Asse X per i dettagli.
La cinghia deve risultare tesa al punto giusto.
Una cinghia poco tesa può causare perdite di passi sull’asse X mentre una cinghia troppo tesa potrebbe sollecitare meccanicamente tutta la struttura e rompersi precocemente o causare la rottura dei supporti che reggono il cuscinetto dell’ X end idler.
X-END-IDLER+belt1

Terminata questa operazione verificare che il carrello si muova agevolmente e senza troppo sforzo lungo l’asse X e che la cinghia non si porti alle estremità del cuscinetto o della puleggia.
Attenzione: Verificare durante queste operazioni che i cavi dello stepper motor non siano in contatto elettrico tra loro. Questo comporta un maggior sforzo durante le prove manuali di azionamento.

Verificato tutto questo e centrato opportunamente la puleggia del motore, stringere definitivamente i grani della puleggia.

Questo il risultato finale.

end_xyz_assy

Post successivo: Assemblaggio Estrusore

Post introduttivo e indice.

Prusa i3 Assemblaggio Asse Z

Per questa fase deve essere completata la fase precedente Assemblaggio Asse X e servono le seguenti parti:

2 barre filettate M5 L= 300mm
2 elastic coupler foro 5mm
elastic coupler foro 5mm2 barre lisce (guide di precisione) lunghe 320mm e diametro 8mm
10 viti autofilettanti 4x20mm

2 stepper motor
6 viti M3x12
rondelle con foro da 3mm.

Z-AXIS-BOTTOM-LEFT-V2
Z-AXIS-BOTTOM-LEFT-V2

Z-AXIS-BOTTOM-RIGHT-V2
Z-AXIS-BOTTOM-RIGHT-V2

oppure Z-AXIS-TOP-LEFT-V3
Z-AXIS-TOP-LEFT-V3

oppure Z-AXIS-TOP-RIGHT-V3
Z-AXIS-TOP-RIGHT-V3ENDSTOP-Z-HOLDER-V3
ENDSTOP-Z-HOLDER-V3

oppure ENDSTOP-Z-HOLDER-V4
ENDSTOP-Z-HOLDER-V4che va usato solo in coppia con la parte X-END-MOTOR-V3 (vedi capitolo Assemblaggio Asse X)  posizionato diversamente dal precedente
ENDSTOP-Z-HOLDER-V4_1I files STL di tutte le versioni di queste parti sono scaricabili qui:parti_plastiche_asse_Z_V1

Per il posizionamento e fissaggio di queste parti alla struttura portante in legno, fare riferimento alla figura sottostante rispettando le due misure indicate.

Posizionamento_Asse Z.

Eseguire le pre-forature del frame in legno con punta da 2mm usando le quote indicate nel disegno meccanico  FRAME in LEGNO  pubblicato nel post  3D Printer Prusa i3 Struttura meccanica

Il fissaggio dei vari Z-AXIS TOP e BOTTOM è stato fatto mediante viti autofilettanti d=4mm l=18-20mm da legno con testa phillips.
Iniziare fissando alla struttura i supporti motore Z-AXIS-BOTTOM-LEFT-V2 e Z-AXIS-BOTTOM-RIGHT-V2 rispettando la distanza di 45mm del primo foro dal bordo inferiore e la distanza di 362mm tra gli assi delle barre lisce dell’asse Z.

Avvitare la prima vite in basso e poi le altre.  Non usare avvitatori oppure usarli con la frizione regolata per l’intervento con il minimo sforzo in quanto stringendo troppo la vite, potrebbe sgranarsi il legno truciolare (dipende dalla densità e dalla qualità del truciolare utilizzato) oppure potrebbe rompersi la plastica dei supporti.

Io ho usato l’avvitatore nella prima parte senza serrare la vite.  Il serraggio lo ho poi effettuato a mano con un buon cacciavite.

Alloggiare la struttura dell’asse X realizzata nel post precedente, con le barre lisce da 320mm di scorrimento dell’asse Z.

Infilare le due barre lisce nei fori dei supporti appena fissati.

Infilare dal basso le due barre filettate M5 ed avvitarle nei dadi M5 incassati negli X-End motor e X-End idler nel post precedente.

Ora posizionare i supporti superiori Z-AXIS-TOP-LEFT-V3 e Z-AXIS-TOP-RIGHT-V3 e fissarli con le viti autofilettanti verificando sempre la distanza di 362mm tra gli assi delle barre lisce dell’asse Z.

Durante questa operazione utilizzare il gioco rimasto tra i fori dei supporti e le viti autofilettanti per rispettare il parallelismo delle due barre lisce e contemporaneamente muovere la struttura X lungo l’asse Z per verificare che scorra senza eccessivi attriti.

Ricordarsi di lubrificare i cuscinetti lineari prima di inserirvi le barre ed effettuare le operazioni appena dette.

Avvitare la barra filettata M5 dal basso fino a farla fuoriuscire di 1-2mm dai fori dei supporti superiori Z-AXIS-TOP-LEFT-V3 e Z-AXIS-TOP-RIGHT-V3.

Stringere le viti autofilettanti e verificare che la struttura X scorra senza eccessivi attriti lungo l’asse Z.

Ora è possibile avvitare i due motori che faranno ruotare le due barre filettate M5 per i movimenti dell’asse Z.

Prima di tutto inserire nelle barre M5 i due elastic coupler (accoppiatori elastici)
Ora alloggiare il motore nell’apposita sede con i fili rivolti verso la struttura in legno ed infilati nei fori passanti della struttura.
Usare tre viti M3x12 con una rondella per fissare i motori.IMG_1085Regolare la barra filettata in modo che si appoggi all’asse del motore ed avvitare il coupler serrando i grani di fissaggio.

Questa figura indica in particolare il fissaggio del motore sinistro che implica anche il fissaggio dell’ENDSTOP-Z-HOLDER-V3.
Le due viti che fissano contemporaneamente il motore e l’endstop holder, verranno svitate in seguito per fissare e tarare l’endstop. Perciò consiglio di non stringerle eccessivamente.

Posizionati i motori, centrare verticalmente gli accoppiatori elastici e serrare i grani con una chiave a brugola. Se l’asse del motore è fresato il grano dell’accoppiatore si troverà sopra questa parte. Una limata anche alla barra filettata nella zona in cui si serra la vite, permetterà una migliore tenuta dell’accoppiatore.

motore sx  motore dx

Post successivo: Assemblaggio Meccanico Finale

Post introduttivo e indice.

Assemblaggio Asse X

Post introduttivo e indice.

Prima di passare all’assemblaggio dei componenti dell’asse Z si deve pre-assemblare l’asse X con le seguenti parti plastiche:

X-End motor
X-END-MOTOR-V2

X-End idler
X-END-IDLER

X-carriage
X-CARRIAGEStampati in ABS presso il fablab.
I files STL sono scaricabili qui: parti plastiche asse X

Questi sono i file aggiornati con delle migliorie (per i più esperti): parti-plastiche-asse-X_V1

In particolare i due X End e Motor idler sono pesantemente modificati con dispositivo antiwobble.

X-END-MOTOR-V3  X-END-IDLER_new

Il dispositivo consiste di una molla abbastanza robusta che eserciti una pressione sui 2 dadi (invece di uno) in modo da ridurre al minimo il gioco in Z sulla barra filettata.

Prima di tutto vanno inseriti i dadi (se necessario a caldo) e poi va infrapposta la molla.

Successivamente si avvita la barra filettata. Usare del grasso lubrificante sulla barra filettata ed eventualmente aggiustare la posizione dei dadi se la barra dovesse opporre troppo sforzo.

L’X-END-MOTOR-V3 possiede ora anche un supporto per una vite M3 di regolazione del finecorsa e relativo dado da inserire nella cava (con molta attenzione).

X-END-MOTOR-V3_1L’X carriage viene sostituito dal nuovo X_CARRIAGE_FRONT quasi del tutto identico al precedente salvo una leggera modifica alla distanza delle fessure con l’impronta della cinghia GT2 che ora bloccano bene la cinghia GT2 incastrandola perfettamente nell’impronta evitando l’utilizzo delle fascette di fissaggio esterne.

carriage1Ho inoltre aggiunto l’ X_CARRIAGE_REAR che chiude posteriormente la scatola cuscinetti
X-carriage back carriage2

e le seguenti parti meccaniche:

8 LM8UU Pillows
2 barre lisce (guide di precisione) diametro 8mm Lunghezza 370mm
GT2 Belt (rientra nei 2 metri comperati nel post precedente)
1 cuscinetto a sfere tipo 624
1 vite M4x20 più relativo dado M4
1 vite M3x40 più realtivo dado M3 (da usare per la regolazione dell’endstop Z
sull’X-END-MOTOR-V3)
Rondelle con foro da 4mm.
2 dadi M5 (4 dadi M5 in caso si usino gli stl V1)
Fascette.

Inserire con cautela 2 cuscinetti lineari nell’ X-End idler

X_end_idler_assembly

e 2 cuscinetti nell’ X-End motor

X_end_motor_assemblyInserire il cuscinetto 624 nell’ X-End idler e infilare la vite M4x20 con relative rondelle per fissarlo nel suo alloggiamento.  La vite deve essere stretta al punto giusto evitanto di rompere la plastica dell’Idler e permettendo nel contempo la rotazione del cuscinetto.

X_end_idler_assembly1Alloggiare nell’apposita sede il dado M5 che servirà per gli spostamenti dell’asse Z.
Eventualmente preriscaldarlo con la punta di un saldatore per inserirlo più facilmente.

X_end_idler_assembly2Alloggiare nell’apposita sede il dado M5 anche nell’ X-End motor.

X_motor_assemblyAppoggiare il tutto su un tavolo ed inserire le 2 barre lisce da 370mm (quelle dell’asse X) nei due fori laterali dell’ X-End motor o dell’ X-End idler ed inserire due cuscinetti LM8UU in ciascuna barra.

Inserire l’altra estremità delle barre nei fori dell’altro supporto X-End motor o  X-End idler verificando che la distanza tra gli assi dei cuscinetti LM8UU destinati alle barre lisce dell’asse Z sia di 362mm.

X_assembly1Distanza_Asse Z
Nel post successivo Assemblaggio Asse Z andremo ad assemblare tutto questo sul frame della stampante.

Post successivo: Assemblaggio Asse Z

Post introduttivo e indice.

 

Prusa i3 Struttura Letto di stampa

Post introduttivo e indice.

 

Realizzazione della struttura del letto di stampa

Per realizzare questa struttura servono le seguenti parti:

1 Lastra in alluminio avente misure di almeno 210 x 210 x 4-5mm
8 Viti M4x25mm testa svasata + 8 dadi M4
4 viti M3x25mm  testa svasata + 6 dadi M3 Nylonstop
2x viti M3x20mm testa svasata + 2 dadi M3
4 molle (non ho le specifiche esatte)

4 LM8UU Pillows
1 Y-BELT-HOLDER
Stampati in ABS con infill 80%
I files STL sono scaricabili qui (zip aggiornato): parti plastiche print_bed

Mi sono procurato la lastra in alluminio che verrà fissata sui 4 LM8UU pillows (aggiornati) e sulla quale verrà montato il print bed.  Si tratta di un semilavorato in alluminio ricavato da un’apparecchiatura dismessa con dimensioni che fortunatamente sono di 240x244x5mm perciò adatte al mio scopo.  Questo ripiano verrà trascinato dalla cinghia GT2 lungo l’asse Y.     Su questo verrà fissato il print bed vero e proprio in plexiglass da 10mm tagliato al laser, fornito gentilmente dal fablab su mio disegno.
Per garantire un’area di stampa di 200x200mm ho dovuto calcolare una distanza di 80mm tra i cuscinetti LM8UU anteriori e posteriori dell’asse Y in base alla posizione Y esatta dell’ugello dell’extruder rispetto al piano di stampa che secondo il montaggio standard da manuale è 65mm.
bed_240x244

Presso il Fablab ho effettuato i fori in base al mio disegno BED_240x244_NEW

Nella la foratura della lastra di alluminio oltre ai 4 fori da 3mm agli angoli e i due fori verticali al centro, tenere in considerazione solo i fori da 4mm orizzontali per il fissaggio dell’LM8UU Pillow (supporto cuscinetti) e non quelli verticali da 3mm che servivano per i Pillows vecchio tipo.

BED_240x244_NEW

I 4 fori agli angoli serviranno per le viti M3x25 sulle quali saranno calettate le 4 molle sulle quali verrà appoggiato il piatto di stampa in plexiglass lasercut.

A cosa servono le molle?
Ora che lo so guai se mancassero!
Le molle servono principalmente per poter regolare l’altezza del letto di stampa in base al punto Z=0  raggiunto dall’estrusore.
La punta dell’estrusore deve sfiorare il letto di stampa (vedremo in seguito più accuratamente nella sezione Calibrazione) in tutti i punti. Per assicurarci questo, prima di tutto il letto deve essere assolutamente piano, e poi regolando le quattro viti poste ai 4 angoli del letto di stampa si tara questa condizione.
Esiste inoltre una ragione più effimera che promuove queste 4 molle che non devono essere troppo rigide in quanto devono poter essere schiacciate dall’estrusore quando l’asse Z fa il birichino…. All’inizio non ci credevo…. poi mi sono dovuto ricredere. Ogni tanto con smanettamenti estremi, annullamento di stampe ecc, l’asse Z scende sotto lo zero fregandosene del microswitch fracassandolo!  Se non ci fossero state le molle sotto il letto di stampa, che mi hanno dato alcuni istanti di tempo per togliere l’alimentazione alla “bestia impazzita” avrei fracassato anche il corpo estrusore.
Gli stepper hanno una forza all’asse di 5Kg/cm! Non si fermano davanti a nulla!!
Lo dico ora e lo ripeterò anche in altri post: Quando si interrompe una stampa, premere subito dopo il pulsante di reset di Arduino per resettare tutta la stampante.

I 4 LM8UU pillows vanno inseriti a pressione sui cuscinetti lineari LM8UU .

Io ho usato una morsa per far entrare gradualmente il cuscinetto nel pillow.
Fare solo attenzione che il cuscinetto sia allineato in modo da entrare nello spazio a lui riservato nel pillow. Non usare martelli o maniere pesanti per questa operazione pena la rottura del pillow.

LM8UU pillow (nuova versione più robusta) Vanno a sostituire i precedenti LM8UU Pillows. Aggiornati anche nello zip scaricabile.

Inserire i dadi M4 negli appositi incassi esagonali dei supporti cuscinetto usando la punta del saldatore per inserirli a caldo evitando così di criccare la plastica.

LM8UU_Pillow_NEW_bottomLM8UU_Pillow_NEW_top

Particolare dell’assemblaggio Pillow – cuscinetto.

Pillow new assy

Usare le 8 viti M4x25mm per fissare i 4 LM8UU pillows alla lastra di alluminio. La lunghezza delle 8 viti va calibrata in funzione dello spessore della lastra di alluminio.
Se si usa un ripiano in alluminio di minor spessore, la lunghezza delle viti dovrà essere accorciata di conseguenza.

Se tra il bordo superiore del cuscinetto ed il bordo inferiore del ripiano di alluminio  (vedi figura) dovesse esserci dell’aria, creare uno spessore abbastanza rigido di misura adeguata da introdurre durante il fissaggio per colmare questo gap. (io ho usato della gomma da camera d’aria)

Fissare l’ Y Belt Holder al piatto con le 2 viti  M3x20 o 15mm.

Y belt holder_Y Belt holder

Fissare poi la cinghia GT2 all’ Y Belt holder come indicato in figura e bloccare le estremità con una fascetta.

fiss.cinghia

Per riassumere, l’esploso della struttura inferiore (I Pillows sono diversi).

esploso

Andiamo ora a montare il letto di stampa vero e proprio sulla base in alluminio appena assemblata.
Questo è stato tagliato al laser presso il fablab utilizzando una macchina per taglio laser che si basa su un disegno dxf da me realizzato in base alle misure calcolate.
print-bed_230x234

Il file dxf utilizzato si trova nel seguente zip:   print-bed_230x234.zip

Le 4 viti M3x25 che sostengono il piatto di stampa in plexiglass mediante le relative molle, sono unicamente trattenute da un dado M3 nylonstop posto sotto il piatto di alluminio.
Questo rende facile la taratura del letto di stampa con l’ugello dell’estrusore ma presenta un inconveniente emerso solo dopo l’esecuzione delle prime stampe.
Nei movimenti bruschi (quasi sempre) il piatto di stampa in plexiglass, essendo piuttosto pesante, bascula per inerzia di circa +/- 0.5mm in direzione Y a causa delle viti che non sono fissate saldamente a piano inferiore. Questo non fissaggio causa anche un continuo e sgradevole scricchiolio durante la stampa.

particolare letto di stampa

Per fare in modo che la vite su cui scorre verticalmente il piatto di stampa grazie alla molla, non oscilli lungo l’asse Y durante i movimenti del piatto, ho inserito un secondo dado nylonstop M3, sopra il ripiano in alluminio (indicato in rosso in figura).
E’ stato sufficiente aggiungere questo dado solo alle viti anteriori del piatto di stampa per dare maggiore rigidità orizzontale in asse Y a tutta la struttura.
L’eventuale taratura del letto di stampa potrebbe essere un tantino più complessa ma i risultati ci sono.
Questa modifica ha annullato il wobble (discontinuità dell’estruso in direzione Y) riscontrato sui pezzi fin’ora stampati.

Fissaggio della struttura Y al telaio della stampante.

Terminato l’assemblaggio della struttura metallica dell’asse Y con il letto di stampa, io ho verniciato il telaio in legno previa stuccatura delle parti ruvide (parti tagliate ecc.).
Per la verniciatura ho usato un nero opaco da carrozzeria antigraffio in bomboletta

In foto si può notare il nuovo look del frame appena stuccato e pitturato con il piano di stampa fissato con le viti e le molle di livellamento.

IMG_1066

IMG_1067  IMG_1084

Ora si deve fissare tutta la struttura al telaio della stampante.

Prima di tutto si devono regolare i dadi  M10 e relative rondelle da 39mm inseriti precedentemente nelle barre filettate M10 longitudinali da 380mm dell’asse Y ad una distanza di 245mm dal corner anteriore (vedi figura).
struttura_Y

Precisamente i dadi M10 anteriori e rondelle anteriori vanno avvitati alla distanza indicata mentre i dadi e rondelle posteriori saranno di conseguenza 20-25mm più in dietro (dipende dallo spessore del tramezzo in truciolare)

Questa regolazione va poi verificata con estrusore montato per centrare l’escursione Y con il letto di stampa in base alla posizione dell’ugelllo di stampa.

Effettuate queste regolazioni è possibile stringere i 4 dadi M10 sulle asole del tramezzo.
fissaggio Y
IMG_1072

Questo il risultato prima della regolazione finale.

 

Post successivo: I motori Stepper per la Prusa i3

Post introduttivo e indice.