Aggiornamento: calendario aperture / Update: openings calendar

In occasione della Festa della Liberazione (festività nazionale italiana) e della Giornata Internazionale dei Lavoratori, lo SciFabLab rimarrà chiuso durante i due giorni di sabato 25 aprile e venerdì 1 maggio.
In preparazione della Trieste Mini Maker Faire ci saranno quattro giorni di apertura straordinaria in aprile per pubblico e maker: i due lunedì 20 e 27 aprile e i due mercoledì 22 e 29 aprile. Due giorni di apertura straordinaria anche in maggio, il lunedì 4 e il mercoledì 6.

In occasion of the “Festa della Liberazione” (italian national holiday) and the International Workers’ Day the SciFabLab will be closed on both Saturday 25 April and Friday 1st May.
To prepare for the Trieste Mini Maker Faire, there will be four extra opening days in April: both Mondays 20 and 27 April, and both Wednesdays 22 and 29 April. Two extra days also in May, on Monday 4 and Wednesday 6.

Aperture fino alla Trieste Mini Maker Faire
Openings up the Trieste Mini Maker Faire

Lunedì 20 Aprile: APERTO 13:00–21:00
Monday 20 April: OPEN 1pm – 9pm

Martedì 21 Aprile: APERTO 18:00–21:00 NOTA: apertura dalle 18!
Tuesday 21 April: OPEN 6pm – 9pm Please NOTE: open after 6pm!

Mercoledì 22 Aprile: APERTO 13:00–21:00
Wednesday 22 April: OPEN 1pm – 9pm

Giovedì 23 Aprile: APERTO 13:00–21:00
Thursday 23 April: OPEN 1pm – 9pm

Venerdì 24, Sabato 25 e Domenica 26 Aprile: CHIUSO
Friday 24, Saturday 25 and Sunday 26 April: CLOSED

Lunedì 27 Aprile: APERTO 13:00–21:00
Monday 27 April: OPEN 1pm – 9pm

Martedì 28 Aprile: APERTO 13:00–21:00
Tuesday 28 April: OPEN 1pm – 9pm

Mercoledì 29 Aprile: APERTO 13:00–21:00
Wednesday 29 April: OPEN 1pm – 9pm

Giovedì 30 Aprile: APERTO 13:00–21:00
Thursday 30 April: OPEN 1pm – 9pm

Venerdì 1 Maggio: CHIUSO
Friday 1 May: CLOSED

Sabato 2 Maggio: APERTO 15:00–21:00
Saturday 2nd May: OPEN 3pm – 9pm

Domenica 3 Maggio: CHIUSO
Sunday 3 May: CLOSED

Lunedì 4 Maggio: APERTO 13:00–21:00
Monday 4 May: OPEN 1pm – 9pm

Martedì 5 Maggio: APERTO 13:00–21:00
Tuesday 5 May: OPEN 1pm – 9pm

Mercoledì 6 Maggio: APERTO 13:00–21:00
Wednesday 6 May: OPEN 1pm – 9pm

Giovedì 7 Maggio: APERTO 13:00–21:00
Thursday 7 May: OPEN 1pm – 9pm

Venerdì 8 Maggio: CHIUSO (allestimenti per la TSMMF)
Friday 8 May: CLOSED (setup for the TSMMF)

Sabato 9 e Domenica 10 Maggio: Trieste Mini Maker Faire
lo SciFabLab sarà APERTO per i visitatori dalle 11:00 alle 19:00 (sabato) e dalle 10:00 alle 17:00 (domenica)

Saturday 9 and Sunday 10 May: Trieste Mini Maker Faire
The SciFabLab will be OPEN for the public
from 11am to 7pm (Saturday) and from 10am to 5pm (Sunday)

TSMMF

L’alimentatore

Post introduttivo e indice.

Dopo una lunga trattazione meccanica eccoci finalmente alla parte elettrica/elettronica.
La parte indispensabile per il funzionamento della stampante è l’alimentatore.

Quali requisiti deve avere l’alimentatore per la stampante 3D Prusa i3?

Tensione di Ingresso:   220Vac
Tensione di Uscita: 12Vcc 5A (60W) per l’alimentazione dell’estrusore  e motori.
12Vcc 11A (132W)  per l’alimentazione del letto di stampa riscaldato.

Con questi requisiti è possibile riutilizzare un alimentatore ATX da 250-300W di un vecchio computer inutilizzato.  Comunque maggiore è la potenza erogata meglio è.

Nel mio progetto ho utilizzato un ATX da 500W regalatomi da un collega.

L’alimentatore ATX nasce per alimentare a 5V l’elettronica del computer e a 12V gli hard disk e driver vari.
La corrente complessivamente erogata per un computer che è circa la metà di quella massima erogabile viene suddivisa su più conduttori che vanno con gli appositi connettori ad alimentare piastre, HD, Floppy, CD  ecc.

Dato che a noi servono sostanzialmente due linee a 12volt, che eroghino due potenze diverse, dovremo modificare l’alimentatore.

PRIMA DI APRIRE  L’ATX
ATTENZIONE, all’interno dell’alimentatore ci sono alte tensioni che possono anche causare la morte per folgorazione.

Prima di aprire l’alimentatore assicurarsi che sia stato spento da qualche ora in modo che tutti i condensatori si siano sufficientemente scaricati.

In ogni caso prestare la massima attenzione a non causare cortocircuiti con lo chassis metallico. Questo può causare folgorazioni!

Apriamo dunque questo ATX e tagliamo tutti i connettori collegati sui fili gialli (12Volt) sui fili rossi (5Volt) sui fili neri (MASSA).

Dovremmo trovare anche dei fili arancioni (3.3Volt) ed un filo verde (ENABLE).IMG_1006 Il panorama dovrebbe essere circa questo.

Una volta aperto l’ATX scopriremo che i fili gialli del 12Volt partono tutti dalle stesse piazzole del PCB.
Per fare in modo che le correnti che useremo non vadano a surriscaldare i cavetti, li raggruppiamo in modo che la corrente si suddivida su piu conduttori ed in particolare useremo 4 fili gialli per la linea da 12V 11A
e 2 fili gialli per la linea da 12V 5A
Se l’alimentatore che si ha a disposizione dovesse avere più fili, andranno tutti utilizzati suddividendoli con le stesse proposzioni.

Lo stesso vale per i fili neri di massa,  Di questi ve ne sono molti di più in quanto usati anche per le linee a 5V e 3,3V.

IMG_1002

Useremo perciò lo stesso numero di conduttori neri da affiancare ai gialli. I rimanenti neri li possiamo arrotolare e se riusciamo li lasciamo all’interno dell’alimentatore oppure li portiamo fuori  assieme a quelli rossi del 5Vcc (in ugual numero) per un eventuale uso per accessori extra.
Anche i fili arancioni li lasceremo all’interno dell’alimentatore accorciandoli al minimo ed isolandoli.

L’ENABLE
Ah si!! non dimentichiamo di collegare il filo verde ad un filo di massa (nero) in modo da abilitare l’ATX ad accendersi appena si inserisce la spina o si preme l’interuttorino (se presente, anche a vuoto (senza carichi collegati)  Se si usa un ATX relativamente nuovo dovrebbe esserci l’interruttore.IMG_1005

Separati i fili nelle due linee, possiamo richiudere con cautela l’ATX .

IMG_1009
Dovremmo avere una struttura come questa.

4+4 fili (positivo e negativo) per il 12Vcc 11A
2+2 fili (positivo e negativo) per il 12Vcc 5A
N fili rossi  e N fili neri (positivo e negativo) per il 5Vcc  (NON USATI).

Filo verde a massa (Isolato e rimane all’interno della scatola).

Prima di collegarlo alla stampante verificare che tutto funzioni misurando con un tester la presenza del 12Volt, del 5Volt e che il ventilatore di raffreddamento giri senza far rumori strani.

Post successivo :  L’elettronica

Post introduttivo e indice.

 

Prusa i3 Assemblaggio Estrusore

Post introduttivo e indice.

Per la realizzazione dell’estrusore mi sono ispirato al tipo Wade Extruder ampiamente documentato in Internet ed utilizzato nella maggior parte delle stampanti di questo tipo.

Le parti necessarie per questa fase sono le seguenti:

Parti plastiche stampate in Fablab e da questa stampante:

BODY-EXTRUDEUR-WADE-1.75mm-with-support
BODY-EXTRUDEUR-WADE-1.75mm

EXTRUDER-IDLER
extruder-idler

WADE-BIG-GEAR_43T
WADE-BIG-GEAR_43T
WADE-SMALL-GEAR_10T
WADE-SMALL-GEAR_10T
FAN-DUCT
FAN-DUCT
FAN-DUCT_PLA   (può essere stampato in un secondo tempo)
FAN-DUCT_PLA
FAN_DUCT_PLA_SUPPORT (può essere stampato in un secondo tempo)
FAN_DUCT_PLA_SUPPORT

 

FAN GRID
FAN_GRIDDi questa parte non pubblico il file STL perchè l’ho progettata in fretta e non mi piace. Lascio quindi libertà di scelta. (In internet se ne trovano di più belle).

Tutte queste parti devono essere stampate possibilmente in ABS, in particolare le prime 4 parti e il FAN_DUCT_PLA_SUPPORT dovranno avere un infill di almeno l’85/90% per garantire una maggiore solidità e resistenza al calore.
Le restanti 4 parti possono anche essere stampate in PLA in quanto non sottoposte a particolari sollecitazioni e fonti di calore.

I files STL sono scaricabili qui: parti plastiche Extruder

1 stepper motor
180px-RepRap-NEMA-17
3 viti M3x12
rondelle con foro da 3mm per il fissaggio del motore

3 cuscinetti a sfere tipo 608

1 Hobbed Bolt con filetto M8 e gola zigrinata per filamento da 1,75mm
bolt 25mm_1,75mm

7-8 rondelle diametro 18-20mm e foro da 8   (le stesse usate per la struttura dell’asse Y)

1 Dado M8 autobloccante (nylonstop)

1 Hot End tipo E3D V6 completo di riscaldatore,  termistore ugello da 0.4mm (nozzle) e ventillatore di raffreddamento  già assemblati. Viene inoltre fornito con tubetto Bowden in caso si voglia utilizzare questo metodo di alimentazione del filamento.

E3DV6

La descrizione originale del Hot End  E3D V6 è la seguente:
Il modello E3D V6 è il migliore Hot End al momento disponibile capace di estrudere materiali come ABS, PLA, LAYWOO-D3, NYLON ed altri.
Si trova in vendita su Ebay a prezzi che vanno da 20 euro fino a 60 euro (per la versione originale al 100%)

Si trovano versioni denominate Full Metal che non hanno un tubicino in teflon (PTFE) nel tratto compreso tra il dissipatore e l’hothend e permettono di spingere l’estrusore a temperature fino a300 gradi.

Le versioni con tubicino di PTFE vanno usate con temperature massime di 240 gradi.
Il PTFE è un materiale autolubrificante che permette un agevole scorrimento del filamento all’interno dell’estrusore.

Io utilizzo da parecchio tempo e molto intensamente l’E3D V6 nella versione con PTFE e posso assicurare che non mi ha dato mai un problema.

La ventolina di raffreddamento del gambo deve essere collegata direttamente al 12V e deve perciò essere sempre accesa alla massima velocità.

L’estrusore E3D V6 è ordinabile per filamenti da 3mm e da 1,75mm, completo di ugello da 0.4mm intercambiabile, elemento riscaldante da 40W 12V, Termistore da 100Kohm dotati di cavi di collegamento da 50cm e guaine resistenti al calore.

Diametro ingresso filamento: Input Diameter – 1.75mm
Diametro filamento estruso: Output Diameter – 0.4mm
Elemento riscaldante: Heating Element – 12v (40W)
Corpo dissipante in Alluminio – Aluminium heatsink
Ugello in Ottone – Brass nozzle (0.4mm)
Blocco riscaldante – Heater block
– 100K ohm NTC thermistor  Resistance: 100Kohm Accuracy: + / -1%
Temperature range: -50°+300°C Diameter: 2.0mm  B Value: 3950k
– 12v 40W ceramic cartridge heater.

Profilo termico Marlin: 11

Riservare una particolare attenzione all’acquisto dell’HotEnd perchè da questo dipende per l’80% la qualità della stampa.

1 barra rettificata diametro 8mm lunghezza 20mm (dovrebbe far parte del kit di barre lisce acquistate in precedenza).

1 o 2 ventilatori da 40x40mm 12volt con almeno 1 mt di cavo bipolare da utilizzare per il raffreddamento del PLA stampato.

2 molle di tensionamento extruder idler (si possono usare le molle presenti all’interno delle mollette da biancheria comperate all’IKEA)

8 viti M3x20mm e 8 dadi (assemblaggio ventilatori ai 2 fan duct);
2 viti M3x20mm e 2 dadi (fissaggio ventilatori al corpo extruder);
1 vite M3x35 e 1 dado M3 (fissaggio Extruder idler al corpo extruder);
2 viti M3x40mm e 2 dadi M3 (fissaggio Hot End al corpo extruder);
2 viti M3x50mm e 4 dadi M3 (assemblaggio Extruder Idler);
1 vite M3x10mm e 1 dado M3 (fissaggio puleggia 10T allo stepper motor)
Rondelle M3 a piacimento.

4 bulloni testa esagonale M4x30

Comperate qualche vite e dadi M3 in più perchè quando scivolano di mano vanno persi e si ritrovano solo quando non servono più!

Assemblaggio:

Iniziamo con assemblare i due ventilatori con i relativi Fan duct e Fan grid

HE fan assyEXTRUDER fan assy

Ora assembliamo l’Extruder idler
introdurre la barra rettificata 8x20mm nel cuscinetto 608 e alloggiare il tutto nell’idler esercitando una leggera pressione (non usare la forza).
Una volta alloggiato, il cuscinetto deve poter ruotare liberamente sulla barra.

Extruder idler assy

Inserire il dado M3 nell’apposita sede scaldandolo eventualmente con la punta del saldatore regolato a 180°C.

Inserire le viti M3x50 e le molle di pressione del premi filo.
La sequenza è VITE – RONDELLA – MOLLA – RONDELLA  inserire il tutto nel foro e avvitare il dado senza stringere.
Extruder idler assy2Extruder idler assy1Questo dado serve ad evitare che aprendo il premi filo per manutenzione, si sfili la vite con le rondelle e le molle.

Assemblare l’extruder come segue:

Alloggiare i due dadi M3 negli appositi fori:
Inserire la WADE-BIG-GEAR_43T nell’Hobbed bolt, seguita dalle 5 rondelle da 8mm e il cuscinetto 608;

Infilare l’hobbed bolt semi assemblato nel foro del body extruder ed inserire l’altro cuscinetto 608, le due rondelle ed il dado di serraggio autobloccante (nylonstop).

A seconda dei casi possono essere necessarie più o meno rondelle.

Extruder_ASSY

Serrare il dado e verificare che la gola zigrinata dell’Hobbed bolt sia allineata con il foro di passaggio del filamento.  Eventualmente aggiungere o togliere rondelle.

Extruder_ASSY2       Extruder_ASSY1

Asemblare la puleggia da 10 denti  WADE-SMALL-GEAR_10T inserendo il dado M3 nella feritoia ed avvitandovi la vite M3x10.

Gear 10T_assyOra inserire la WADE-SMALL-GEAR_10T sull’asse dello stepper motor e stringere la vite per bloccarla sull’asse del motore. Fissare poi  lo stepper motor nell’apposita sede con 3 viti M3x12mm regolando opportunamente la distanza tra i denti delle puleggie per far si che coincidano senza premere troppo una sull’altra e generare attriti indesiderati.

Extruder_ASSY4Verificato questo, stringere le viti e controllare che tutto giri senza attriti.

Ora fissare l’extruder idler pre assemblato in precedenza al corpo Extruder mediante la vite M3x35mm.   Il dado M3 è già inglobato nell’idler nell’apposita sede.

 

Extruder_ASSY5La vite di fissaggio non va stretta molto in quanto l’idler deve poter girare liberamente quando viene aperto per un’ispezione o per la pulizia della gola zigrinata dell’Hobbed Bolt.
Extruder_ASSY6Ora inseriremo l’Hot End nella sede e lo fissiamo con le due viti M3x40 e relativi dadi.

 

Extruder_ASSY7L’Hot  End va inserito fino in fondo nell’apposito foro sotto il corpo extruder ed orientato con il foro per la resistenza riscaldante posto verso la parte posteriore della stampante.
Quando si inseriscono le viti di fissaggio ricordarsi di inserire il FAN_DUCT_PLA_SUPPORT e bloccare poi tutto assieme al corpo estrusore mediante i due dadi M3.

Eventualmente aggiungere due rondelle per distribuire meglio la pressione del dado.
Extruder_ASSY8

NOTA: Le viti sono volutamente lunghe in modo da poter prevedere un secondo FAN DUCT support alla destra dell’Hot End in caso si desideri una stampante dedicata unicamente alla stampa di oggetti in PLA.   Al momento posso aggiungere che un solo ventilatore per il raffreddamento del PLA è sufficiente.

In un secondo momento potrete sbizzarrirvi a creare dei fanduct più performanti.

Ora è la volta del FAN DUCT assemblato prima con il ventilatore e il FAN Grid.
Questo FAN DUCT convoglia l’aria di raffreddamento sulla parte alta dell’Hot End in modo da evitare un eccessivo riscaldamento di questo e scongiurare l’accidentale fusione del corpo estrusore in ABS.
Si tenga presente che la parte finale dell’Hot End raggiunge temperature di 200-250 gradi che sono in linea di massima le temperature di fusione del PLA e dell’ ABS e durante la stampa il calore andando naturalmente verso l’alto, tende a riscaldare la parte superiore dell’Hot End che pur essendo dissipata grazie alle alettature in alluminio non lo è a sufficienza e può provocare due problemi:

1) il filamento che scorre all’interno si scalda prematuramente e raggiunge la densità di una poltiglia che intasa irrimendiabilmente il condotto costringendo a smontare pezzo per pezzo l’Hot End.

2) L’eccessivo riscaldamento causa lo scioglimento del corpo estrusore in ABS o peggio ancora se stampato in PLA con il rischio concreto di dover buttare via tutto alla prima stampa.

Perciò prima di intraprendere la stampa verificare che il ventilatore di raffreddamento dell’Hot End si accenda e giri regolarmente alla massima velocità appena si accende la stampante.

Riprenderemo questo argomento nei post successivi parlando dei collegamenti elettrici.

La figura illustra le posizioni ammesse del fan duct durante le operazioni con la stampante.

Posizione 1) Fan Duct orientato direttamente sull’Hot End
Quando si attende il riscaldamento prima della stampa e durante la stampa.
Praticamente SEMPRE.

Posizione 2) Dopo una stampa se si vuole accelerare il raffreddamento dell’Hot End
Ricordarsi poi di riportarlo in posizione 1 altrimenti si possono avere difficoltà nel raggiungimento della temperatura alla stampa successiva.

posizioni fan duct

Queste istruzioni non sono valide per l’estrusore E3D V6 che è già dotato di ventilatore e fanduct già montati sul gambo dell’estrusore.

Allo stesso modo assembliamo il FAN DUCT per il raffreddamento del PLA.
Extruder_ASSY9Questo Fan Duct è meno critico del precedente ma assicura ottimi risultati se usato con le stampe di oggetti in PLA. Fare attenzione che l’estremità inferiore del FanDuct non tocchi l’Hot End in quanto potrebbe sciogliersi.

NON SI DEVE USARE per stampare oggetti in ABS, pena layer che si sfogliano.
Va quindi attivato o disattivato in fase di slicing a seconda del materiale utilizzato per le stampe.  (Anche questo argomento lo riprenderemo in seguito).

Ora il gruppo estrusore è completo e non resta che fissarlo al carrello dell’asse X al quale eravamo rimasti nel post precedente Assemblaggio Meccanico FInale mediante 4 bulloni M4x30 e relativi dadi che andranno infilati nelle feritoie superiori come indicato nelle figure sotto.
In caso di difficoltà nella rotazione dei bulloni/dadi usare delle rondelle di spessore.

fissaggio extruder

IMG_1088

Nel mio caso ho utilizzato viti per la parte superiore e bulloni per la parte inferiore.

Seguono delle foto reali scattate durante l’assemblaggio e durante le stampe.

IMG_1078 IMG_1082 IMG_1082IMG_1208 IMG_1185

 

Post successivo: L’alimentatore

Post introduttivo e indice.

Maker’s Easter holidays / Le festività pasquali dei Maker

In occasione delle festività della Pasqua, lo SciFabLab rimarrà chiuso il giorno di sabato 4 aprile.
Per la preparazione della Trieste Mini Maker Faire ci saranno due giorni di apertura straordinaria per pubblico e maker il lunedì 27 e mercoledì 29 aprile (dalle 13 alle 21).

The SciFabLab will be closed on Saturday 4 April for the Easter holidays. To prepare for the Trieste Mini Maker Faire, there will be two extra opening days Monday 27 and Wednesday 29 April (1pm–9pm).

iu

Prusa i3 Assemblaggio Meccanico Finale

 Post introduttivo e indice.

In questo post andremo a terminare l’assemblaggio dei tre assi e a verificare tutte le parti meccaniche assemblate.

A questo punto dovremmo aver davanti una stampante non ancora finita con

– Struttura in legno terminata e verniciata (a scelta);
– Carrello asse Y completamente assemblato;
– Barre lisce e filettate di supporto dell’asse Z, fissate correttamente alla struttura di    supporto  in legno;
– Carrello asse X con supporto scorrevole per l’estrusore posto in sede sui cuscinetti inseriti sulle barre lisce dell’asse X;

Per questa fase ci servono

1 stepper motor
180px-RepRap-NEMA-17
3 viti M3x12
rondelle con foro da 3mm
Cinghia GT2
GT2 Belt

Una Puleggia GT2
puleggia dentata

Fissare il motore sul supporto X-End motor usando le 3 viti M3x12 ed eventuali rondelle di spessore.
X motor+belt

Inserire la Puleggia GT2 sull’asse del motore e stringere un solo grano. (N.B. la puleggia usata realmente è quella in fotografia) Solo quando avremo trovato la corretta posizione della puleggia sull’asse del motore stringeremo definitivamente i due grani.

Posizionare la cinghia GT2 e fissare le due estremità (indicate con le frecce) con delle fascette stringicavo.
X carriage+belt2

La tensione della cinghia può essere regolata facilmente grazie alle dentature sotto i supporti dietro il carriage.

Se nella fase Assemblaggio Asse X  usate le parti-plastiche-asse-X_V1 il fissaggio della cinghia non necessita più dell’uso di fascette esterne al carrello perchè questa rimarrà incastrata saldamente nella fessura con il calco della cinghia GT2.
Inoltre il set comprenderà anche un coperchio posteriore vedi capitolo Assemblaggio Asse X per i dettagli.
La cinghia deve risultare tesa al punto giusto.
Una cinghia poco tesa può causare perdite di passi sull’asse X mentre una cinghia troppo tesa potrebbe sollecitare meccanicamente tutta la struttura e rompersi precocemente o causare la rottura dei supporti che reggono il cuscinetto dell’ X end idler.
X-END-IDLER+belt1

Terminata questa operazione verificare che il carrello si muova agevolmente e senza troppo sforzo lungo l’asse X e che la cinghia non si porti alle estremità del cuscinetto o della puleggia.
Attenzione: Verificare durante queste operazioni che i cavi dello stepper motor non siano in contatto elettrico tra loro. Questo comporta un maggior sforzo durante le prove manuali di azionamento.

Verificato tutto questo e centrato opportunamente la puleggia del motore, stringere definitivamente i grani della puleggia.

Questo il risultato finale.

end_xyz_assy

Post successivo: Assemblaggio Estrusore

Post introduttivo e indice.

Arduino Day a Trieste

L’ICTP SciFabLab e il Mittelab hackerspace di Trieste organizzano una serie di eventi aperti al pubblico e totalmente gratuiti in occasione dell’Arduino Day di sabato 28 Marzo 2015. Il programma si svolgerà come segue:

Programma del mattino @ ICTP SciFabLab (via Beirut 6, Miramare):

• 10:00 – 10:30 Arduino, MakerFaires e FabLab (by Carlo)
•  10:30 – 12:30 Arduino Show and Tell (dimostrazioni di vari progetti):

• “Pescarduino“: etichettatura e tracciabilità del pescato (by Federico)
• “Pinkarduino”: e-wearables, gioielleria, fashion con Arduino (by Gaya)
• “Stellarduino”: Arduino per la didattica dell’astronomia (by Michele)
• “Ricercarduino”: Internet of Things, Arduino e ricerca scientifica (by Marco)
• “Using Arduino for scientific research in Guatemala” (by Iván) – in english (slides in PDF: Using Arduino for Scientific Research in Guatemala)
• “Direzione Mittelab”: cos’è un Hackerspace (by Aljaž)

Programma del pomeriggio/sera @ Mittelab (via Manzoni 11, Trieste):

• 15:00 – 15:30 – Welcome to Mittelab
• 15.30 – 15.45 – Cos’è un Hackerspace (by Aljaž)
• 15.45 – 18:00 – Laboratori pratici:

• Arduino: Cos’è? (4 esperimenti da provare!)
 Impariamo a saldare!

• 18.00 – 18:30 – Conclusione Arduino Day
• 18.30 – 20:00 – Bicchierata e rinfresco di inaugurazione MITTELAB
• 20.00 – 00:00 – MitteLAN party e chit-chat (portatevi i vostri computer!)

official hashtag: #ArduinoD15

ARDUINODAY15_banners_720x300

 

Prusa i3 Assemblaggio Asse Z

Per questa fase deve essere completata la fase precedente Assemblaggio Asse X e servono le seguenti parti:

2 barre filettate M5 L= 300mm
2 elastic coupler foro 5mm
elastic coupler foro 5mm2 barre lisce (guide di precisione) lunghe 320mm e diametro 8mm
10 viti autofilettanti 4x20mm

2 stepper motor
6 viti M3x12
rondelle con foro da 3mm.

Z-AXIS-BOTTOM-LEFT-V2
Z-AXIS-BOTTOM-LEFT-V2

Z-AXIS-BOTTOM-RIGHT-V2
Z-AXIS-BOTTOM-RIGHT-V2

oppure Z-AXIS-TOP-LEFT-V3
Z-AXIS-TOP-LEFT-V3

oppure Z-AXIS-TOP-RIGHT-V3
Z-AXIS-TOP-RIGHT-V3ENDSTOP-Z-HOLDER-V3
ENDSTOP-Z-HOLDER-V3

oppure ENDSTOP-Z-HOLDER-V4
ENDSTOP-Z-HOLDER-V4che va usato solo in coppia con la parte X-END-MOTOR-V3 (vedi capitolo Assemblaggio Asse X)  posizionato diversamente dal precedente
ENDSTOP-Z-HOLDER-V4_1I files STL di tutte le versioni di queste parti sono scaricabili qui:parti_plastiche_asse_Z_V1

Per il posizionamento e fissaggio di queste parti alla struttura portante in legno, fare riferimento alla figura sottostante rispettando le due misure indicate.

Posizionamento_Asse Z.

Eseguire le pre-forature del frame in legno con punta da 2mm usando le quote indicate nel disegno meccanico  FRAME in LEGNO  pubblicato nel post  3D Printer Prusa i3 Struttura meccanica

Il fissaggio dei vari Z-AXIS TOP e BOTTOM è stato fatto mediante viti autofilettanti d=4mm l=18-20mm da legno con testa phillips.
Iniziare fissando alla struttura i supporti motore Z-AXIS-BOTTOM-LEFT-V2 e Z-AXIS-BOTTOM-RIGHT-V2 rispettando la distanza di 45mm del primo foro dal bordo inferiore e la distanza di 362mm tra gli assi delle barre lisce dell’asse Z.

Avvitare la prima vite in basso e poi le altre.  Non usare avvitatori oppure usarli con la frizione regolata per l’intervento con il minimo sforzo in quanto stringendo troppo la vite, potrebbe sgranarsi il legno truciolare (dipende dalla densità e dalla qualità del truciolare utilizzato) oppure potrebbe rompersi la plastica dei supporti.

Io ho usato l’avvitatore nella prima parte senza serrare la vite.  Il serraggio lo ho poi effettuato a mano con un buon cacciavite.

Alloggiare la struttura dell’asse X realizzata nel post precedente, con le barre lisce da 320mm di scorrimento dell’asse Z.

Infilare le due barre lisce nei fori dei supporti appena fissati.

Infilare dal basso le due barre filettate M5 ed avvitarle nei dadi M5 incassati negli X-End motor e X-End idler nel post precedente.

Ora posizionare i supporti superiori Z-AXIS-TOP-LEFT-V3 e Z-AXIS-TOP-RIGHT-V3 e fissarli con le viti autofilettanti verificando sempre la distanza di 362mm tra gli assi delle barre lisce dell’asse Z.

Durante questa operazione utilizzare il gioco rimasto tra i fori dei supporti e le viti autofilettanti per rispettare il parallelismo delle due barre lisce e contemporaneamente muovere la struttura X lungo l’asse Z per verificare che scorra senza eccessivi attriti.

Ricordarsi di lubrificare i cuscinetti lineari prima di inserirvi le barre ed effettuare le operazioni appena dette.

Avvitare la barra filettata M5 dal basso fino a farla fuoriuscire di 1-2mm dai fori dei supporti superiori Z-AXIS-TOP-LEFT-V3 e Z-AXIS-TOP-RIGHT-V3.

Stringere le viti autofilettanti e verificare che la struttura X scorra senza eccessivi attriti lungo l’asse Z.

Ora è possibile avvitare i due motori che faranno ruotare le due barre filettate M5 per i movimenti dell’asse Z.

Prima di tutto inserire nelle barre M5 i due elastic coupler (accoppiatori elastici)
Ora alloggiare il motore nell’apposita sede con i fili rivolti verso la struttura in legno ed infilati nei fori passanti della struttura.
Usare tre viti M3x12 con una rondella per fissare i motori.IMG_1085Regolare la barra filettata in modo che si appoggi all’asse del motore ed avvitare il coupler serrando i grani di fissaggio.

Questa figura indica in particolare il fissaggio del motore sinistro che implica anche il fissaggio dell’ENDSTOP-Z-HOLDER-V3.
Le due viti che fissano contemporaneamente il motore e l’endstop holder, verranno svitate in seguito per fissare e tarare l’endstop. Perciò consiglio di non stringerle eccessivamente.

Posizionati i motori, centrare verticalmente gli accoppiatori elastici e serrare i grani con una chiave a brugola. Se l’asse del motore è fresato il grano dell’accoppiatore si troverà sopra questa parte. Una limata anche alla barra filettata nella zona in cui si serra la vite, permetterà una migliore tenuta dell’accoppiatore.

motore sx  motore dx

Post successivo: Assemblaggio Meccanico Finale

Post introduttivo e indice.

Opening time update / Aggiornamento orari

Opening time from Saturday, 21 March for ICTP scientists, guest projects and visitors:
Orario di apertura a partire da Sabato 21 Marzo per scienziati ICTP, progetti ospiti e visitatori:

Tuesday, Thursday:  1pm–9pm
Martedì e giovedì: 13:00–21:00
Saturday: 3pm–9pm
Sabato: 15:00–21:00

Mornings, Tuesday to Friday 10am–12am: ONLY ICTP scientists and visitors (or guest projects with special authorization)
Mattine, da martedì a venerdì 10:00–12:00: ESCLUSIVAMENTE scienziati e visitatori ICTP (o progetti ospiti con speciale autorizzazione)

Monday and Sunday: closed
Lunedì e Domenica: chiuso