Category Archives: 3D printing

Open Day @ ICTP SciFabLab

Open Day @ ICTP SciFabLab – Sabato 28 Ottobre 2017

Programma della giornata #EMWeek17

Apertura al pubblico dello SciFabLab alle ore 15:00

Durante tutta la durata dell’evento sarà possibile partecipare al “Mini-workshop di saldatura e lasercutter”, corso a ciclo continuo a cura dello staff dello SciFabLab in cui si costruirà un piccolo gadget, con lo scopo di imparare le basi della saldatura a stagno e di cimentarsi con il disegno al computer e la realizzazione un semplice oggetto con il taglio laser (gratuito, senza prenotazione, durata: 30 minuti, età da 12 a 99 anni)

15:15–15:45 Seminario: “Cosa sono i Fablab e chi sono i Maker?” (C. Fonda), introduzione alle tecnologie ma soprattutto ai principi che stanno dietro a questi nuovi fenomeni e che spingono gli odierni consumatori passivi di oggetti tecnologici a diventare dei protagonisti attivi che progettano e realizzano soluzioni.

15:45–17:15 Workshop: “Impariamo a conoscere Arduino: che cos’è, come si collega, basi di programmazione ed esempi di applicazione” (G. Fior), attività pratica per assoluti principianti, in cui si verrà guidati per mano ad esplorare il mondo di Arduino, un microcontroller economico e versatile che permette a tutti di sperimentare con l’elettronica, la robotica, l’automazione e mille altri campi interessanti (gratuito, consigliata la prenotazione, durata: 1 ora e 30 minuti, età da 12 a 99 anni). Per informazioni e prenotazioni inviare una email a: scifablab@ictp.it

17:15–18:00 Seminario: “Introduzione alla stampa 3D con tecnologia a filamento” (M. Baruzzo), in cui si presenterà al pubblico la tecnologia di stampa 3D di tipo FDM, ormai alla portata di tutte le tasche, mostrando cosa è possibile realizzare con queste macchine.

18:00–19:00 Presentazioni di alcuni dei progetti realizzati presso lo SciFabLab durante quest’anno:

  • 18:00–18:15 Rampa di lancio per razzi ad acqua controllata da Arduino, a cura di Science Industries
  • 18:15–18:30 Un esempio di uso creativo del lasercutter: il progetto Cromopolis, a cura di Sara Sossi
  • 18:30–18:45 Progettazione e autocostruzione di una stampante 3D, a cura di Daniele Lucà
  • 18:45–19:00 Progettazione e realizzazione di  alcuni ausili per la riabilitazione motoria, a cura di Giancarlo Pellis

19:00–20:30 Workshop: “Impariamo a conoscere Arduino: che cos’è, come si collega, basi di programmazione ed esempi di applicazione” (G. Fior), attività pratica per assoluti principianti, in cui si verrà guidati per mano ad esplorare il mondo di Arduino, un microcontroller economico e versatile che permette a tutti di sperimentare con l’elettronica, la robotica, l’automazione e mille altri campi interessanti (gratuito, consigliata la prenotazione, durata: 1 ora e 30 minuti, età da 12 a 99 anni). Per informazioni e prenotazioni inviare una email a: scifablab@ictp.it

Chiusura al pubblico alle ore 21:00

 

 

Lo SciFabLab celebra la European Maker Week

In occasione della European maker week lo SciFabLab apre le porte a tutti con conferenze, laboratori e attività in pieno stile maker, aperte a tutto il pubblico e gratuite.

Durante la giornata di lunedì 23 ottobre si terrà una conferenza internazionale (in lingua inglese, aperta al pubblico) su “Science Dissemination for the Disabled”, che tratterà di tecnologie aperte per creare e disseminare contenuti scientifici per tutti di come facilitare l’accesso alla scienza per le persone disabili. Programma e info.

Il martedì 24 ottobre si terrà invece una mattinata di studi (in lingua inglese, aperta al pubblico) su “Scientific Fabrication Laboratories“, volta ad analizzare e supportare la realizzazione di FabLab scientifici in aree remote. Programma e info.

Il mercoledì 25 ottobre si proseguirà con il workshop (in lingua inglese, aperto al pubblico) “Virtual Reality technologies and tools“, organizzato in collaborazione con Trieste Film Festival/Associazione Alpe Adria Cinema e Contaminazioni Digitali. Una giornata di laboratori e dimostrazioni pratiche sulla realtà virtuale e sui software di produzione di video a 360°. Programma e info.

Chiuderemo il sabato 28 ottobre, quando dalle 15 alle 21 saremo in FabLab per un’Open day, pronti a rispondere alle vostre curiosità e a mostrarvi i nostri progetti. Ma ci sarà spazio anche per workshop (in italiano) su Arduino, conferenze, laboratori di stampa 3D…

Stay tuned!

 

Angular Clamps (Morsetti angolari)

Using a 3D cutter it is very easy to cut the elements of a drawer or a rectangular box, however it is not easy to glue the parts together since orthogonal gluing is needed. Orthogonal clamps are sell on the market, but their cost is often greater than the cost of the  drawer or box itself.  This post shows how to build with 3d printing and use a simple set of angular clamps.

Col taglio 3D è molto facile costruire gli elementi di scatole e cassetti ma l’incollaggio è reso difficoltoso dalla necessità di mettere “in morsa” parti con incollaggio ortogonale. Esistono in commercio morse angolari con prezzi che vanno da da qualche decina di euro in su, di fatto superiori al costo della scatola o del cassetto in costruzione. Questo post propone una soluzione semplice ed efficace per costruire un “tirante” che avvolga gli elementi della scatola da incollare.

The figure below shows the scheme of the clamp, the clamp is modelled by using OpenScad. The paremetric OpenScad file and an stl file can be downloaded here: AngularClampsDrawerV1.

Un file .zip contenente un file paramentrico OpenScad e il risepttivo stl per la produzione dei blocchi puo’ essere scaricato da AngularClampsDrawerV1.

Angular Clamps Scheme and Measures

Angular Clamps Scheme and Measures. See the OpenScad file.

The figure below shows the set of four blocks.

I blocchi realizzati in stampa 3d, sono mostrati nell’immagine sottostante.

morsetti_angolari_assieme

Group of four angular clamps to glue a drawer or a box.

To glue a drawer the clamps can be locked by either using a nylon rope or a threaded rod.

Il tirante puo’ essere realizzato con cordino di nylon o con delle barre filettate e dei blocchi che fungono da giunzione e guida.

For the case of nylon rope needed elements are:

  1. few meters of nylon rope, 3 – 5 mm diameter, slightly elastic,
  2. a rope stretcher to put in tension the rope,
  3. some metallic plate to prevent the glue from the drawer to stick to the clamps.

Elementi necessari per l’uso dei blocchi nella versione base con cordino sono:

  1. alcuni metri di cordino in nylon da 3 – 5 mm di diametro, meglio se leggermente elastico.
  2. un girello tendicavi, normalmente usato per tirare i cavi delle antenne o degli stendi biancheria.
  3. Alcune squadrette o spessori di metallo.

The figure below shows the final mount.

La figura sottostante mostra l’uso dell’assemblaggio con cordino di nylon e tenditore

Angular Clmaps Usage

Angular Clamps for Drawers, usage with a nylon rope.

To prevent clamps to be sticked by the glue some metallic plate can be used. Better to place them after having putted in tension the rope.

Per evitare che la colla sugli angoli del cassetto incolli i morsetti si possono introdurre piccoli inserti in metallo. In genere e’ piu’ facile farlo dopo aver tensionato la corda.

Angular Clamp with Rope

Angular Clamp with Rope and a metallic plate

Alternatively, clamps can be kept in place by using threated rods using the holes in blocks.

Alternativamente, si possono usare delle barre filettate fatte passare nei fori opportunamente predisposti.

angular clamp with thread rod

Angular clamp fixed with threaded rods.

Prusa i3 UPGRADE

Post introduttivo e indice.

Con questo post, vorrei descrivere un upgrade abbastanza importante effettuato sulla mia Prusa i3 autocostruita.

Questo upgrade può essere effettuato anche sulle stampanti Prusa i3 Hephestos in quanto le nuove parti sono compatibili con il kit.

Seguendo le linee guida fondamentali del progetto PRUSA i3 la stampante è stata realizzata usando due barre filettate M5 per la movimentazione dell’asse Z.

Pur funzionando in modo accettabile, a lungo andare e con l’usura delle barre filettate, questa soluzione comporta delle leggere imperfezioni sulle stampe che sono ben conosciute nella letteratura RepRap con il nome di wobble e Z ribbing. Z ribbing1 Risolto il wobble con delle molle che tenevano premuti verso l’esterno due dadi M5 (invece  di un unico dado in appoggio) in modo da ridurre il gioco tra dado e vite, è rimasto lo Z ribbing ovvero delle striature longitudinali disposte nel senso dei layer che viste in sezione danno l’idea che i layer non siano perfettamente allineati uno sull’altro. Z ribbingQuesto difetto è particolarmente subdolo perchè fa pensare che la sua causa dipenda da imperfezioni nel movimento degli assi X e Y o al fatto che le barre filettate non essendo perfettamente dritte, possano trascinare nel loro moto ondulatorio anche le 2 barre in acciaio temprato inox da 8mm e tutto il carrello X (cosa assai improbabile).

Questo odiato difetto è invece causato da un non uniforme avanzamento dell’asse Z nel passaggio da un layer all’altro dovuto al fatto che le barre filettate non sono barre di precisione ed in breve tempo, come anche  i dadi M5,  si usurano con il risultato che alcuni layer sono da 0.2mm mentre altri sono da 0.18 o 0.23 causando uno schiacciamento del materiale estruso che genera i rigonfiamenti sulle superfici esterne.  Questo succede ciclicamente perchè probabilmente le barre si usurano a metà (in senso assiale) per il fatto che sono comunque leggermente ondulate e l’usura si manifesta in modo asimmetrico tra barra destra e sinistra.

Guarda caso questi rigonfiamenti si susseguono ciclicamente con un passo di 0.8mm…si…proprio il passo verticale della vite M5. Z ribbing2 La soluzione a questo inconveniente si ha sostituendo le comuni barre filettate M5 con le barre trapezoidali. Leadscrew Con una spesa di circa 50 euro (comprese le spese di spedizione) presso questo negozio italiano su ebay  DHM  trasformate la vostra stampante in una macchina professionale o quasi.

Le barre da comperare sono le seguenti: 2 x LEAD SCREW ROD Ø8 mm – 300 mm

Una confezione contiene: – 1 x vite senza fine Ø 8 mm lunghezza 300 mm – 1 x bullone (ottone)

Le barre hanno un passo di 2mm per giro che vanno moltiplicati per il numero di principi della vite.

Nel mio caso il passo è di 2mm con 4 principi, per cui il passo effettivo è di 8mm per giro ovvero ogni giro l’asse X si sposta sull’asse Z di 8mm.

Questo valore ci servirà poi per il calcolo e l’aggiornamento degli  Z steps nel firmware.

Assieme alle barre vanno comperati due accoppiatori 5x8mm Motore (asse da 5mm)  – Barra (asse da 8mm)  sempre da DHM elastic coupler foro 5mmQuesto aggiornamento non è un lavoro banale come sembra in quanto per attuarlo si devono  ristampare  i due supporti della struttura asse X, destro e sinistro (quello col motore), il meccanismo del tendicinghia, i supporti  Z top destro e sinistro con i fori allargati (che vanno ulteriormente ripassati con la punta da 8 facendo attenzione a non romperli.

Iniziamo dalle parti STL scaricabili qui: parti per upgr. viti trapezie

L’archivio zip contiene le seguenti parti: X_End_MOTOR_T.stl X_End_MOTOR_T X_End_IDLER_T.stl X_End_IDLER_T belt_tensioner_arm.stl belt_tensioner_arm placca_belt_tensioner.stl  placca_belt_tensioner X_belt_tensioner.stl    X_belt_tensioner             rondella_belt_tensioner.stl rondella_belt_tensioner     Z-AXIS-TOP-LEFT-V5_BT.stl  e Z-AXIS-TOP-RIGHT-V5_BT.stl Z-AXIS-TOP-LEFT-RIGHT

Tutte queste parti vanno stampate in PLA o meglio PET (per chi ama l’avventura in ABS) con infill di almeno 80% impostando perimetri e spessori top/bottom a 0.8mm e supporti dove serve.

 

ASSEMBLAGGIO X_End_IDLER_T  Prima di tutto deve essere pre-assemblato il tendicinghia:

Le viti ed i bulloni necessari sono indicati direttamente nel disegno di assemblaggio.

Le due viti M3x20 servono ad esercitare una certa pressione sulle barre lisce infilate nell’idler per mantenerle ferme in battuta sul foro cieco dell’X End motor sul lato sinistro. X_belt_tensioner_assyProcedere con il resto dell’assemblaggio dell’idler e tendicinghia come indicato quì sopra.

esploso X-End Idler.

infine infilare i due cuscinetti lineari (estratti dal vecchio IDLER) e la boccola della vite trapezia. Quest’ultima può essere fissata all’idler con due viti M3x15mm e relativi dadi.  esploso X-End Idler_1

Se necessario ripassare i fori con una punta di diametro adeguato.
Inserire con cautela la barra liscia nei cuscinetti e farla scorrere oliando moderatamente.

 

ASSEMBLAGGIO X_End_MOTOR_T  esploso X-End_motor Inserire nella feritoia il dado M3 nylonstop (servirà per mantenere più stabile la vite di regolazione dell’endstop Z nella calibrazione)

Infilare i due cuscinetti lineari (estratti dal vecchio X end) e la boccola della vite trapezia. Quest’ultima può essere fissata all’X end Motor con due viti M3x15mm e relativi dadi.

ATTENZIONE nell’estrazione e riposizionamento dei cuscinetti lineari. Possono sboccolare e far uscire tutte o parte delle sferette compromettendone il funzionamento.

Fissare il motore e poi avvitare la vite di regolazione nel dado M3.
Inutile dire che per tutti i dadi che vanno annegati nella plastica è bene usare il saldatore (con cautela) per riscaldarli e facilitare l’operazione.

Procedere con il ripristino di tutta la struttura dell’asse X…carrello cinghia ecc.

Rimontare l’estrusore ed allineare l’asse X con il piatto di stampa.

ATTENZIONE queste due ultime righe non sono così banali!
Le viti trapezie sono molto precise per cui se l’asse X non è perfettamente orizzontale le boccole possono bloccarsi.

NON ACCENDERE ANCORA LA STAMPANTE!

Dopo aver allineato tutto si deve modificare il firmware per cambiare il valore di steps per millimetro relativi all’asse Z.

Aprire con Arduino IDE 1.06 il Configuration.h ed andare alla riga 500 circa del firmware:
#define DEFAULT_AXIS_STEPS_PER_UNIT   {100, 100, 400, 687.58933}
(i valori X,Y ed E sono quelli della mia stampante)

si deve cambiare solo il valore  Z STEPS PER UNIT (il terzo valore in neretto)

Per una barra M5 il valore precedente era 4000 ora con le viti trapezie diventa 400.

Rimando al capitolo Il Firmware e le sue impostazioni di base
per i dettagli sul calcolo degli Z-Steps

Dopo aver fatto l’upload del firmware si può accendere la stampante.

Verificare l’allineamento dell’HotEnd sul piatto di stampa e il movimento dell’asse Z.
L’asse Z deve muoversi in modo fluido senza perdite di passi.

Una prova interessante dopo aver fatto l’allineamento dell’Hotend sul piatto di stampa, è far muovere l’asse Z fino alla massima altezza o giù di li, verificare con precisione la distanza Z destra e sinistra dal piatto di stampa.  Poi impartire un HOME XYZ e verificare all’arrivo se l’HotEnd risulta ancora allineato con il piatto.

Se non fosse così significa che nel viaggio l’uno o l’altro motore hanno perso degli step a causa di attriti indesiderati.

Se lubrificando le barre il problema non si risolve sarà necessario verificare ed eventualmente aumentare la corrente sui driver dei motori Z in quanto la barra trapezoidale richiede più sforzo.

Questa è la procedura : Regolazione corrente motori

 

PROVE DI STAMPA

Fatte tutte le verifiche e stampare il solito cubo 30x30x30.

Risultato…problema risolto!!!  il Z ribbing è sparito.    Diciamo che siamo al livello della Ultimaker.

comparison

PRIMA
Z ribbing1

DOPO

IMG_2446
Post introduttivo e indice.

D3, la stampante con un asse in più

Si può migliorare la stampa di oggetti con difficili sottosquadra? Forse si.

Ecco una breve descrizione della D3, la stampante che permette di variare l’angolo di uscita della plastica dall’estrusore, rispetto alla direzione della gravità, durante la stampa di un oggetto.
Questa stampante è stata presentata per la prima volta alla Maker Faire 2015 a Roma e fa parte del materiale a disposizione dei maker che portano avanti i loro progetti al SciFabLab.

 

finale1

Prime idee

Uno dei più grandi nemici della stampa 3D è la gravità: infatti quando la plastica viene fusa dall’estrusore non può far altro che cadere verso il basso.
Per questo inizialmente ho pensato che ruotando la stampante di 180 gradi fosse possibile ottenere dei risultati migliori su alcune superfici con sottosquadra particolarmente difficili.
I primi test sono risultati molto incoraggianti in quanto si notava un netto miglioramento nella stampa di oggetti attaccati al piano da punte molto sottili.

test2
test1

test3

Sviluppo della stampante al contrario

Convinto da questi risultati ho cominciato la progettazione di un supporto che permettesse la rotazione della stampante lungo l’asse y, in modo da porterla ruotare la stampante agevolmente.
Per questo progetto ho scelto di utilizzare una Ultimaker Original, uno dei modelli di stampante commerciale più diffusi, e di studiare una struttura che potesse essere costruita in qualsiasi Fablab dotato di tagliatrice laser, evitando di utilizzare viti o chiodi e non modificando in alcun modo la stampante stessa.
Per la costruzione ho utilizzato il legno tagliato con la lasercutter, ma è risultato chiaro fin dal primo prototipo che il movimento degli ingranaggi era fortemente ostacolato dall’attrito dovuto al peso della stampante.

C’era inoltre un altro problema: la struttura costruita in questo modo era difficilmente motorizzabile e quindi non controllabile con uno stepper.

proto1
proto2

La svolta e la nuova teoria

A questo punto era chiaro che c’era bisogno di un disegno totalmente diverso da quello sviluppato fino a questo momento: la struttura doveva essere portata sulla stampante e lo stepper doveva essere fissato sulla base, in modo da controllare il movimento dell’intera struttura.
Mi resi anche conto che in questo modo avrei potuto avere l’intero controllo sul movimento durante la stampa e quindi la possibilità di ruotarla anche di 90 gradi per poter fare i \”ponti\”, uno dei maggiori problemi della stampa 3D. Ma perchè fermarmi a questo punto?
Come detto prima il problema della stampa 3D è la gravità stessa: quando la plastica esce fusa dall’estrusore non può far altro che seguire la gravità verso il basso.
In realtà abbiamo anche un altro componente sempre perpendicolare al piano di stampa, cioè la pressione con cui esce dall’estrusore. Tuttavia imponendo una condizione di stampa a bassa velocità, nella quale possiamo trascurare la pressione di uscita della plastica dall’estrusore, l’unica forza agente sulla plastica è la gravità.
Quindi non ci resta che sfruttare la gravità a nostro favore: mantenendo il piano tangente alla superficie del solido che vogliamo ottenere ad un angolo di almeno 45 gradi rispetto alla base di stampa, angolo ottimale per ottenere dei buoni risultati, la gravità influirà in modo marginale sulla stampa, permettendoci di sfruttare nuove modalità di slicing.
disegno

 

Sviluppo del quarto asse

Ritornado alla stampante e applicando quanto detto risulta chiaro che il progetto ha preso una piega totalmente diversa.
Ora la struttura deve:

  • essere costruibile in un Fablab;
  • senza chiodi ne viti;
  • senza modifiche ne strutturali ne firmware alla stampante;
  • ruotabile durante la stampa.

Su consiglio di Carlo, smetto di disegnare ingranaggi su sui far scorrere la stampante e mi concentro su una struttura, da fissare alla stampante, liscia e circolare, che andrà a scorrere in dei cuscinetti sulla base fissa appoggiata al tavolo. Sul lato interno della parte fissata sulla stampante è stata intagliata una corona su cui scorrerà l’ingranaggio fissato allo stepper.

corona

Per quanto riguarda il fissaggio dello stepper alla base ho deciso di utilizzare il peso stesso dello stepper per dare la giusta tensione all’ingranaggio: infatti il pannello che sostiene il motore è libero di muoversi in verticale e solo il peso lo mantiene della sua posizione.
Questa soluzione ha anche un altro vantaggio: se il sistema improvvisamente ha un problema posso sganciare il motore dalla corona semplicemente sollevandolo.
I cuscinetti, per evitare viti e per poter esser completamente costruibili in un Fablab (per non parlare dell’estetica =) ), sono stati sostituiti cuscinetti planetari modificati ed ingranditi, fissati con una serie di perni ed incastri.

cuscinetto

Sviluppo software

Costruito e montato il tutto sono passato alla parte software. L’Ultimaker Original permette l’utilizzo di solo 5 motori, 3 assi e 2 estrusori; questo implica che lo stepper che andrà a muovere questo nuovo asse della stampante dovrà per forza essere quello del secondo estrusore.
Ma sorge un problema: il firmware della stampante non permette l’utilizzo di due estrusori contemporaneamente, quindi per ogni movimento quindi rotatorio della stampante dovrò fare il cambio tool e fare un retract durante la stampa.
A questo punto l’ultimo problema rimasto è lo slicing, infatti non esiste un programma che calcoli anche i movimenti del nuovo asse.
Considerando che è stato inserito un solo nuovo asse, l’oggetto più interessante da stampare risulta il cilindro e modificare il gcode di un cilindro non è molto difficle sfruttando la geometria dell’oggetto.
Ho scritto uno script in python (non sono un informatico, quindi sono sicuro che ci sono modi più semplici o più efficienti per fare quello che ho fatto, vi prego non intasate i commenti con suggerimenti per lo script grazie=) ) che controlla riga per riga il gcode e va a calcolare l’angolo sul lato del cilindro in base alla variazione dell’asse x tra due layer e conoscendo il layer height.
Il resto del codice serve per inserire le righe del gcode che servono per gestire il movimento, considerando anche il punto di partenza dell’estrusore, il quale può essere su uno qualsiasi dei vertici del perimetro.

Risultati

Dai test preliminari risulta che la stampante utilizzata è già al limite delle sue potenzialità, infatti otteniamo dei risultati non molto precisi e puliti.
In ogni caso nelle seguenti foto si confrontano i due pezzi, in particolare si nota in alcuni punti un netto miglioramento rispetto ad una stampa senza rotazione.
normal

 

 

 

 

 

 

 

A sinistra possiamo vedere come il pezzo risulti ben stampato rispetto all’immagine di destra dove si notano i filamenti che tendono a staccarsi.

 

Inverted 3D Printing

Upside down 3D printing of an object without using extra plastic support (no waste material)… A project in progress by Marco Baruzzo at Scientific FabLab of Trieste, Italy

Stampa 3D capovolta di un oggetto senza l’utilizzo di alcun supporto extra di plastica… primi test

inverted3D

CAM03876

CAM03873

CAM03878

Mr 3DFreeze: cold-end device for 3D Printing of melted Wax

We introduce in the images below our first cold-end prototype for 3D printing by selective fast cooling (“freezing”) of a bath of melted material (having low melting-point like Wax and chocolate). This solution is based on thermoelectrical devices and is designed to work with standard RepRap (hot-end) 3D printers, with just simple adaptations of the extruder part, so that the same firmware and g-codes could be used. The printed Wax material can be easily recycled within the same freezing process avoiding any waste. Since Candle-Wax is easily available around the world, we believe the use of Mr 3DFreeze cold-end for the 3D printing of educational objects may find a fertile soil.

Mr3DFreeze_1 Mr3DFreeze_2 Mr3DFreeze_3 Mr3DFreeze_4 Mr3DFreeze_5 Mr3DFreeze_6

“Call for Makers” TSMMF 2015 ancora aperta per pochi giorni!

seconda Trieste Mini Maker Faire (TSMMF) 2015

“Call for Makers” ancora aperta per pochi giorni!
Individui, gruppi, scuole e organizzazioni interessate ad esporre sono incoraggiati a presentare loro progetti. Il 9 e il 10 Maggio 2015 (sabato e domenica) si terra’ la seconda edizione della Trieste Mini Maker Faire. Quest’anno i giorni di apertura diventano due, sempre con ingresso gratuito.

http://makerfairetrieste.it/call-for-makers/

Ci vediamo a Trieste!

From Bottle Caps to 3D-Printing: An open guide

By: J. A. Montoya

 

To the public it is a little known fact that different types of plastic can differ widely on the process that is required in order to recycle them. One common example is plastic bottles, where the bottles and their caps are made of PET and HDPE respectively (frequently Polypropylene is also used as a cap material). At the recycling facility bottles and caps need to be separated because their recycling process is different and this, at a large scale, implies high labor costs and possible waste of some of the material, depending on the separation method that is being used. In general, leaving the caps on the bottles is a better option than throwing them to the dumpster, however, it is important to remember that not every recycling facility around the world is guaranteed to be able to process different types of plastic. A better solution would be to leave the recycling of the transparent part of the bottles (the PET) to a specialized company and make sure that their plastic caps do not end up in a landfill by doing something useful with them at home.

Before going forward, we need to mention that we intend to use the recycled plastic as filament (raw material) for low-cost 3D-printing. The first source of abundant and cheap plastic that always comes to people’s minds is the bottle itself, which is made of PET (recycling code 1) . However, in order to feed this or any other plastic into a 3D-printer, we need first to make plastic filament of a constant diameter. In order to achieve this, PET needs to be heated up to a temperature that renders it soft (not liquid) so that it can be extruded by applying pressure through a hole with a size that will determine the diameter of the filament. The problem that one finds is that in the process of applying heat to PET it crystallizes and becomes brittle. To avoid this crystallization one would have to be very precise in controlling the temperature and the heating/cooling rates of the entire process, in order to keep PET in an amorphous form. The technical challenges inherent to this process make PET less suitable for a DIY project, like the one that we are trying to present here.

While Polypropylene (recycling code 5) is a very popular material to make bottle caps in many countries, in Italy, where we are located, most companies seem to prefer HDPE (recycling code 2) as a material for their plastic bottle-caps. We collected plastic caps in a nearby cafeteria and separated them by their material and color; this is where we noticed the Italian’s preference towards HDPE, since it made approximately 2/3 of the total of collected caps.

20141121_18414020141021_152430

We started the process by shredding the pink-colored HDPE caps. This can be accomplished with some robust kitchen equipment or with specialized hardware.

20141112_174858 20141022_084212

The resulting material needed to be dried before it goes into the filament extruder.

20141112_170120 20141112_170104

Then the filament extruder temperature was set to 132 C, and the feeding of the plastic could start. Each plastic cap will produce between 80 and 100 cm of filament at diameters around 1.75 mm.

20141112_170132 20141112_172005 20141112_171957 

Keep in mind that the filament comes out of the extruder very hot and it is very irregular at first; you should make sure that the weight of the filament that is hanging, as well as the extruding temperature, feeding rate, pressure, etc., remain constant, so that the diameter of the filament reaches some uniformity. If you are doing this for the first time don’t feed the resulting filament into a Makerbot, or into some high-end 3D-printer, it will get clogged and your warranty won’t cover it, try to get some practice first and measure the diameter at several points, to make sure that it is constant and has the desired thickness.

We repeated the same procedure with some blue HDPE caps and got a much nicer filament out of them, after all this was our second attempt :-)

20141121_180952 20141121_181027 20141121_180914

Now it comes the printing part. HDPE experienced a big contraction when it cooled after being extruded by the 3D-printer nozzle. We were not able to get it to stick for more than a few seconds to a clean and smooth hot surface, even after heating our printing bed up to 110 C, which exceeded the maximum bed-temperature in our Solidoodle 3D-printer. We then decided to prepare a mixture of ABS plastic with acetone and cover (paint) the plate with it.

20141122_113958 20141121_173455  20141122_113819

After this procedure the recycled plastic stuck nicely to the blue ABS layer, shown in the picture above.

The main challenge now was that the temperature that is required to guarantee a good flow of HDPE out of the printing nozzle seems to be 220 C or higher. The printer that we were using turned itself off at temperatures above 210 C, as a safety measure. The pink HDPE would stop flowing through the nozzle after just a few minutes because 210 C seemed to be very low for this type of plastic. The blue HDPE filament instead was a bit more amenable to flow at 210 C, but the stress that the extrusion gear was applying on it was too high and eventually surpassed its mechanical limit of stability, causing the filament to bend, which in turn caused it to stop going into the printer’s hot-end and nozzle.

20141121_17291620141122_120132

So far, the final result is not what you would expect from a high-quality filament, but there is still a lot of room for improvement in both extrusion processes, i.e., when producing filament and when printing with it. Have you also experimented with HDPE? Do you have experience with Polypropylene or other plastics not discussed in this post?  Let us know.

20141122_140259

Team:
• Carlo Fonda
Javier A. Montoya

 

We thank S. Faeta, M. Trivella, N. Bonaventure, and Tamara, for their collaboration during this project. For materials and equipment we received support from the ICTP’s Fabrication Laboratory, which is part of the Science Dissemination Unit (SDU) at ICTP.

Nov-2014